In this talk I will discuss how the generators of radial conformal symmetries in Minkowski space-time are related to the generators of time evolution in conformal quantum mechanics. Within this correspondence I will show that in conformal quantum mechanics the state corresponding to the inertial vacuum for a conformally invariant field in Minkowski space-time has the structure of a thermofield double. The latter is built from a bipartite "vacuum state" corresponding to the ground state of the generators of hyperbolic time evolution, which cover only a portion of the time domain. When such generators are the ones of conformal Killing vectors mapping a causal diamond in itself and of dilations, the temperature of the thermofield double reproduces, respectively, the diamond temperature and the Milne temperature perceived by observers whose constant proper time hyper-surfaces define a hyperbolic slicing of the future cone. I will point out how this result indicates that, for conformal invariant fields, the fundamental ingredient for vacuum thermal effects in flat-space time is the non-eternal nature of the lifetime of observers rather than their acceleration.



Talk Number 21040033
Speaker Profile Michele Arzano
Perimeter Institute Recorded Seminar Archive