22060000

Atomic clock interferometers: a test for a quantum generalization of Einstein’s Equivalence Principle and a quantum sensing analysis

APA

Cepollaro, C. (2022). Atomic clock interferometers: a test for a quantum generalization of Einstein’s Equivalence Principle and a quantum sensing analysis. Perimeter Institute for Theoretical Physics. http://pirsa.org/22060000

MLA

Cepollaro, Carlo. Atomic clock interferometers: a test for a quantum generalization of Einstein’s Equivalence Principle and a quantum sensing analysis. Perimeter Institute for Theoretical Physics, Jun. 03, 2022, http://pirsa.org/22060000

BibTex

          @misc{ scitalks_22060000,
            doi = {},
            url = {http://pirsa.org/22060000},
            author = {Cepollaro, Carlo},
            keywords = {Quantum Foundations},
            language = {en},
            title = {Atomic clock interferometers: a test for a quantum generalization of Einstein{\textquoteright}s Equivalence Principle and a quantum sensing analysis},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2022},
            month = {jun},
            note = {Talk #22060000 see, \url{https://scitalks.ca}}
          }
          

Carlo Cepollaro Austrian Academy of Sciences

Source Repository PIRSA
Collection
Talk Type Scientific Series
Subject

Abstract

 It is unknown how the Einstein Equivalence Principle (EEP) should be modified to account for quantum features. A possibility introduced in arXiv:2012.13754 is that the EEP holds in a generalized form for particles having an arbitrary quantum state. The core of this proposal is the ability to transform to a Quantum Reference Frame (QRF) associated to an arbitrary quantum state of a physical system, in which the metric is locally inertial. I will show that this extended EEP, initially formulated in terms of the local expression of the metric field in a QRF, can be verified in an interferometric setup via tests on the proper time of entangled clocks (arXiv:2112.03303). Moreover, the same setup can be analyzed with quantum sensing techniques (arXiv:2204.03006): I will talk about how gravitational time dilation may be used as a resource in quantum information theory, showing that it may enhance the precision in estimating the gravitational acceleration for long interferometric times.