Abstract

Classical shadow tomography provides an efficient method for predicting functions of an unknown quantum state from a few measurements of the state. It relies on a unitary channel that efficiently scrambles the quantum information of the state to the measurement basis. However, it is quite challenging to realize deep unitary circuits on near-term quantum devices, and an unbiased reconstruction map is non-trivial to find for arbitrary random unitary ensembles. In this talk, I will discuss our recent progress on combining classical shadow tomography with quantum chaotic dynamics. Particularly, I will introduce two new families of shadow tomography schemes: 1) Hamiltonian-driven shadow tomography and 2) Classical shadow tomography with locally scrambled quantum dynamics. In both works, I’ll derive the unbiased reconstruction map, and analyze the sample complexity. In the Hamiltonian-driven scheme, I will illustrate how to use proper time windows to achieve a more efficient tomography. In the second work, I will demonstrate advantages of shadow tomography in the shallow circuit region. Then I’ll conclude by discussing approximate shadow tomography with local Hamiltonian dynamics, and demonstrate that a single quench-disordered quantum spin chain can be used for approximate shadow tomography.

 

References:
[1] Hong-Ye Hu, Yi-Zhuang You. “Hamiltonian-Driven Shadow Tomography of Quantum States”. arXiv:2102.10132 (2021)
[2] Hong-Ye Hu, Soonwon Choi, Yi-Zhuang You. “Classical Shadow Tomography with Locally Scrambled Quantum Dynamics”. arXiv: 2107.04817 (2021)

Zoom Link: https://pitp.zoom.us/j/99011187936?pwd=OVU3VkpyZ21YcXRCOW5DOHlnSWlVQT09

Details

Talk Number 21120015
Speaker Profile Hong-Ye Hu
Subject Quantum Physics
Source Repository PIRSA