Tn, Toda and Topological strings

Elli Pomoni

Strings 2019

Brussels, 9 July
[1712.10225 Coman,EP,Teschner]
[1906.06351 Coman,EP,Teschner]

T_{N} theories

Class S of $4 D \mathcal{N}_{=2}$ SCFT $T_{g, n}$ by a compactification of the $A_{N} 6 D(2,0)$ SCFT on Riemann surface of genus g and with n punctures. [Gaiotto 2009]

Riemann surface decomposition in pants and tubes.

Building blocks of Gauge theories: matter and color factors.

TN theories are the most general (trifundamental) "matter".

B $\operatorname{SU}(\mathrm{N})^{3}$ global symmetry
B Isolated fixed points
No $N=2$ Lagrangian description ($\mathrm{N}>2$)

One open problem (2 incarnations)

The partition function of T_{N} theories on S^{4}

AGT [Alday,Gaiotto,Tachikawa 2009]

3pt functions of Toda with 3 generic primaries

Use topological strings, pay a price:
$5 D$ partition function on $S^{4} \times S^{1}$
q-deformation of Toda CFT
The $4 D$ or $q \rightarrow 1$ limit is hard!

$$
q=e^{-R}
$$

Outline

$1 \mathcal{Z}_{T_{N}}^{S^{4} \times S^{1}}$ from web diagrams using the topological vertex formalism.
[1310.3841 Bao,Mitev,EP,Taki,Yagi]
[1310.3854 Hayashi,Kim,Nishinaka]

2 Proposal for 3pt functions of q-Toda: 3 generic primaries.

- $\mathrm{N}=2$ Liouville case
[1409.6313 Mitev,EP]
\square symmetries, zeros

3 Important check: reproduce free field integral representation! * And good for $q \rightarrow 1$!

- poles
[1906.06351 Coman,EP,Teschner]

5-brane Webs

	x^{0}	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}	x^{9}
NS5-branes	-	-	-	-	-	-	\cdot	\cdot	\cdot	\cdot
D5-branes	-	-	-	-	\cdot	-	-	\cdot	\cdot	\cdot

The low energy dynamics of 5D theories is encoded in web diagrams:

5D theories on \mathbf{S}^{1}

$$
x_{5} \sim x_{5}+\mathcal{R}
$$

\# \# of external branes - 3 =
masses and couplings (m 's and g 's) $=8-3=4+1$
B \# of faces = Coulomb branch (a's) = 1

$$
\mathcal{Z}_{\mathrm{Nek}}^{\mathbb{R}^{4} \times S^{1}} \propto \mathcal{Z}_{\mathrm{top}}
$$

SD Nekrasov from the topological vertex formalism

5-brane Webs

The low energy dynamics of 5D T_{N} theories is encoded in the web diagrams:

T_{2}

[Benini,Benvenuti,Tachikawa]
\# \# of external branes $-3=$ masses $=3(N-1) \quad$ (No coupling)
B \# of faces $=$ Coulomb branch $(a$'s $)=(N-1)(N-2) / 2$

The T_{N} topological string partition function using the topological vertex formalism

Extra degrees of freedom

[Bao,Mitev,EP,Taki,Yagi]
[Hayashi,Kim,Nishinaka]
When the web diagram has parallel external legs, Z top includes extra d.o.f.

$$
\mathcal{Z}_{\text {Nek }}^{\mathbb{R}^{4} \times S^{1}}=\frac{\mathcal{Z}_{\text {top }}}{\mathcal{Z}_{\text {extra }}}
$$

Only after removing them we get the correct 5D partition function (with symmetry enhancement)
ex. T_{3} has E_{6} [Argyres,Seiberg]
SU(2) with N_{f} flavours has $E_{N_{f}+1}$
[Seiberg 1996]
For the T_{N} :

$$
\begin{aligned}
\mathcal{Z}_{\text {extra }}=\prod_{i<j=1}^{N} \mathcal{M}\left(e^{-R\left(m_{i}-m_{j}\right)}\right) \mathcal{M}\left(e^{-R\left(n_{i}-n_{j}-\epsilon_{1}-\epsilon_{2}\right)}\right) \mathcal{M}\left(e^{-R\left(\ell_{i}-\ell_{j}\right)}\right) \\
\mathcal{M}\left(e^{-R u}\right)=\prod_{i, j=1}^{\infty}\left(1-e^{-R\left[u+j \epsilon_{1}-(i-1) \epsilon_{2}\right]}\right)^{-1}
\end{aligned}
$$

TN partition functions

$$
\left.\left.\mathcal{Z}_{T_{N}}^{S^{4} \times S^{1}}=\frac{1}{\left|\mathcal{Z}_{\text {extra }}\right|^{2}} \oint \prod_{\text {faces }}[d a]\left|\mathcal{Z}_{\text {top }}\right|^{2} \right\rvert\, \begin{array}{l}
{[\text { Iqbal, Vafa 2012] }} \\
\\
\\
=\# \text { of faces }
\end{array}\right)
$$

$$
\mathcal{Z}_{\text {top }}=\mathcal{Z}_{\text {prod }} \mathcal{Z}_{\text {sum }}
$$

$\mathcal{Z}_{\text {prod }}$ very similar to the usual perturbative part of Lagrangian theories.

TN partition functions

$$
\mathcal{Z}_{\text {top }}=\mathcal{Z}_{\text {prod }} z_{\text {sum }}
$$

$$
\tilde{A}=e^{-R a} \quad \mathfrak{q}=e^{-R \epsilon_{1}}, \mathfrak{t}=e^{R \epsilon_{2}}
$$

$$
\mathcal{M}(U)=\prod_{i, j=1}^{\infty}\left(1-U \mathfrak{t}^{i-1} \mathfrak{q}^{j}\right)^{-1}
$$

[Bao,Mitev,EP,Taki,Yagi]
[Hayashi,Kim,Nishinaka]

$$
\mathrm{N}_{\lambda \mu}^{R}(a)=\prod_{(i, j) \in \lambda} 2 \sinh \frac{R}{2}\left[a+\epsilon_{1}\left(\lambda_{i}-j+1\right)+\epsilon_{2}\left(i-\mu_{j}^{t}\right)\right] \prod_{(i, j) \in \mu} 2 \sinh \frac{R}{2}\left[a+\epsilon_{1}\left(j-\mu_{i}\right)+\epsilon_{2}\left(\lambda_{j}^{t}-i+1\right)\right]
$$

TN partition functions

$\mathcal{Z}_{T_{N}}^{S^{4} \times S^{1}}=\frac{1}{\left|\mathcal{Z}_{\text {extra }}\right|^{2}} \oint \prod_{\text {faces }}[d a]\left|\mathcal{Z}_{\text {top }}\right|^{2}$

- ($\mathrm{N}-1$)($\mathrm{N}-2$)/2 integrals = \# of faces

$$
\mathcal{Z}_{\text {top }}=\mathcal{Z}_{\text {prod }} \mathcal{Z}_{\text {sum }}
$$

- $N(N-1) / 2$ sums still left to perform
$\mathcal{Z}_{\text {prod }}$ very similar to the usual perturbative part of Lagrangian theories.
$\mathcal{Z}_{\text {sum }}$ very similar to the usual instanton part of Lagrangian theories.

TN partition functions

$$
\mathcal{Z}_{T_{N}}^{S^{4} \times S^{1}}=\frac{1}{\left|\mathcal{Z}_{\text {extra }}\right|^{2}} \oint \prod_{\text {faces }}[d a]\left|\mathcal{Z}_{\text {top }}\right|^{2}
$$

- ($\mathrm{N}-1$)($\mathrm{N}-2$)/2 integrals = \# of faces

$$
\mathcal{Z}_{\text {top }}=\mathcal{Z}_{\text {prod }} \mathcal{Z}_{\text {sum }}
$$

- $N(N-1) / 2$ sums still left to perform
$\mathcal{Z}_{\text {prod }}$ very similar to the usual perturbative part of Lagrangian theories.
$\mathcal{Z}_{\text {sum }}$ very similar to the usual instanton part of Lagrangian theories.
with one crucial difference:
$\sum_{\mu} \underline{\left(q_{U V}^{5 D}\right)^{|\mu|}} \frac{\mathrm{N}_{\mu \nu_{1}}^{R}\left(a_{1}\right) \cdots \mathrm{N}_{\mu \nu_{L}}^{R}\left(a_{L}\right)}{\mathrm{N}_{\mu \lambda_{1}}^{R}\left(b_{1}\right) \cdots \mathrm{N}_{\mu \lambda_{L}}^{R}\left(b_{L}\right)} \xrightarrow{R \rightarrow 0} \sum_{\mu} \underline{\left(q_{U V}^{4 D}\right)^{|\mu|}} \frac{\mathrm{N}_{\mu \nu_{1}}\left(a_{1}\right) \cdots \mathrm{N}_{\mu \nu_{L}}\left(a_{L}\right)}{\mathrm{N}_{\mu \lambda_{1}}\left(b_{1}\right) \cdots \mathrm{N}_{\mu \lambda_{L}}\left(b_{L}\right)}$
For Lagrangian theories the 4D limit OK!
$\sum_{\mu}{\underline{\left(e^{-R x}\right)}}^{|\mu|} \frac{\mathbf{N}_{\mu \nu_{1}}^{R}\left(a_{1}\right) \cdots \mathrm{N}_{\mu \nu_{L}}^{R}\left(a_{L}\right)}{\mathrm{N}_{\mu \lambda_{1}}^{R}\left(b_{1}\right) \cdots \mathrm{N}_{\mu \lambda_{L}}^{R}\left(b_{L}\right)} \xrightarrow{R \rightarrow 0} \sum_{\mu} \underline{(1)^{|\mu|}} \frac{\mathrm{N}_{\mu \nu_{1}}\left(a_{1}\right) \cdots \mathrm{N}_{\mu \nu_{L}}\left(a_{L}\right)}{\mathrm{N}_{\mu \lambda_{1}}\left(b_{1}\right) \cdots \mathrm{N}_{\mu \lambda_{L}}\left(b_{L}\right)}$
For T_{N} problematic!
In the 4D limit the sum may not even converge!

2D CFT Review

For N=2 (Liouville) DOZZ: [Dorn,Otto] [Zamolodchikov^2]

$$
C\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)=\left(\pi \mu \gamma\left(b^{2}\right) b^{2-2 b^{2}}\right)^{\frac{Q-\sum_{i=1}^{3} \alpha_{i}}{b}} \frac{\Upsilon^{\prime}(0) \prod_{i=1}^{3} \Upsilon\left(2 \alpha_{i}\right)}{\Upsilon\left(\sum_{i=1}^{3} \alpha_{i}-Q\right) \prod_{j=1}^{3} \Upsilon\left(\sum_{i=1}^{3} \alpha_{i}-2 \alpha_{j}\right)}
$$

For N>2 (Toda) there is NO formula for 3 generic primaries!
The state of the art: [Fateev,Litvinov 2005-2008]
After specialisation of one of the 3 primaries:
$C\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)$ can be written in terms of known functions!

$$
\begin{aligned}
C\left(N \varkappa \omega_{N-1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)= & \left(\pi \mu \gamma\left(b^{2}\right) b^{2-2 b^{2}}\right)^{\frac{\left(2 \mathcal{Q}-\sum_{i=1}^{3} \boldsymbol{\alpha}_{i}, \rho\right)}{b}} \times \\
& \times \frac{\Upsilon^{\prime}(0)^{N-1} \Upsilon(N \varkappa) \prod_{e>0} \Upsilon\left(\left(\mathcal{Q}-\boldsymbol{\alpha}_{2}, e\right)\right) \Upsilon\left(\left(\mathcal{Q}-\boldsymbol{\alpha}_{3}, e\right)\right)}{\prod_{i, j=1}^{N} \Upsilon\left(\varkappa+\left(\boldsymbol{\alpha}_{2}-\mathcal{Q}, h_{i}\right)+\left(\boldsymbol{\alpha}_{3}-\mathcal{Q}, h_{j}\right)\right)}
\end{aligned}
$$

$$
\text { 〇ص——巩 } \Upsilon_{q}\left(x \mid \epsilon_{1}, \epsilon_{2}\right)=(1-q)^{-\frac{1}{\epsilon_{1} \epsilon_{2}}\left(x-\frac{\epsilon_{+}}{2}\right)^{2}} \prod_{n_{1}, n_{2}=0}^{\infty} \frac{\left(1-q^{x+n_{1} \epsilon_{1}+n_{2} \epsilon_{2}}\right)\left(1-q^{\epsilon_{+}-x+n_{1} \epsilon_{1}+n_{2} \epsilon_{2}}\right)}{\left(1-q^{\epsilon_{+} / 2+n_{1} \epsilon_{1}+n_{2} \epsilon_{2}}\right)^{2}}
$$

No Lagrangian, we only know the q-deformed symmetry algebra and representation theory!
[Shiraishi,Kubo,Awata,Odake][Frenkel,Reshetikhin][Lukyanov,Pugai][Feigin,Frenkel][Awata,Odake,Shiraishi,Kubo][Jimbo,Miwa] [Awata,Yamada] [Mironov,Morozov,Shakirov,Smirnov]...

For $N=2$ (q-Liouville) q-DOZZ: [Nieri,Pasquetti,Passerini]
Bootstrap! Solve crossing equation!

For $N>2$ (q-Coda) can q-deform Fateev, Litvinov:

```
Primary with null
```

vector al level 1
$C_{q}\left(N \varkappa \omega_{N-1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right) \cong\left(\frac{\left(1-q^{b}\right)^{2}\left(1-q^{b^{-1}}\right)^{2 b^{2}}}{(1-q)^{2\left(1+b^{2}\right)}}\right)^{\frac{\left(2 \mathcal{Q}-\sum_{i=1}^{3} \boldsymbol{\alpha}_{i}, \rho\right)}{b}}$

$$
\times \frac{\Upsilon_{q}^{\prime}(0)^{N-1} \Upsilon_{q}(N \varkappa) \prod_{e>0} \Upsilon_{q}\left(\left(\mathcal{Q}-\boldsymbol{\alpha}_{2}, e\right)\right) \Upsilon_{q}\left(\left(\mathcal{Q}-\boldsymbol{\alpha}_{3}, e\right)\right)}{\prod_{i, j=1}^{N} \Upsilon_{q}\left(\varkappa+\left(\boldsymbol{\alpha}_{2}-\mathcal{Q}, h_{i}\right)+\left(\boldsymbol{\alpha}_{3}-\mathcal{Q}, h_{j}\right)\right)}
$$

Weyl Reflections and symmetry enhancement

Both T_{N} and the Toda 3pt function have $\operatorname{SU}(\mathbf{N})^{3}$ symmetry.
Weyl reflections imply symmetry enhancement for Toda 3pt functions. Which is the same as the symmetry enhancement of the T_{N} theory.

$$
\begin{gathered}
V_{\alpha}=e^{(\boldsymbol{\alpha}, \varphi)} \\
V_{\mathrm{w} \circ \boldsymbol{\alpha}}=\mathrm{R}^{\mathrm{w}}(\boldsymbol{\alpha}) V_{\boldsymbol{\alpha}}
\end{gathered}
$$

$$
C\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)=C^{\mathrm{inv}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right) C^{\mathrm{cov}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right) \quad[\text { Fateev,Litvinov] }
$$

- For $N=2$ (Liouville):

$$
C^{\operatorname{cov}}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(\pi \mu \gamma\left(b^{2}\right) b^{2-2 b^{2}}\right)^{\frac{Q-\sum_{i}^{3}}{b} 1 \alpha_{i}} \prod_{i=1}^{3} \Upsilon\left(2 \alpha_{i}\right)
$$

$$
C^{\text {inv }}=\left[\prod_{i=1}^{4} \Upsilon\left(\frac{Q}{2}+u_{i}\right)\right]^{-1}=\left[\prod_{i=1}^{4} G\left(\frac{Q}{2}+u_{i}\right) G\left(\frac{Q}{2}-u_{i}\right)\right]^{-1}, \quad \sum_{i=1}^{4} u_{i}=0 \quad \text { has SO(8) like } T_{2} \text { ! }
$$

- For $N=3 C^{\mathrm{inv}}$ has the E_{6} symmetry of T_{3} ! [Argyres,Seiberg]

Our proposal

The Weyl covariant part is mapped to the extra d.o.f.

$$
C_{q}^{\mathrm{cov}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right) \simeq\left|\mathcal{Z}_{\text {extra }}\right|^{2}
$$

$$
\begin{aligned}
& m_{i}=\left(\boldsymbol{\alpha}_{1}-\mathcal{Q}, h_{i}\right) \\
& n_{i}=-\left(\boldsymbol{\alpha}_{2}-\mathcal{Q}, h_{i}\right) \\
& l_{i}=-\left(\boldsymbol{\alpha}_{3}-\mathcal{Q}, h_{N+1-i}\right)
\end{aligned}
$$

V symmetries, zeros
V $\mathrm{N}=2$ Liouville case

The Weyl invariant part to the SD partition function

$$
C_{q}^{\mathrm{inv}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right) \simeq \mathcal{Z}_{T_{N}}^{S^{4} \times S^{1}}
$$

A first check

- Take our proposed formula

Specialise one of the three primaries: with null vector at level 1
Explicit calculation is possible: do the integrals and the sums:

$$
C_{q}^{\text {our }}\left(N \varkappa \omega_{N-1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)=C_{q}^{\mathrm{F} . \mathrm{L} \cdot}\left(N \varkappa \omega_{N-1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)
$$

$$
C_{q}^{\mathrm{inv}}\left(N \varkappa \omega_{N-1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right) \simeq \mathcal{Z}_{\text {free hypers }}^{S^{4} \times S^{1}}
$$

From Topological string to Free fields

Geometric transitions: Exchange the sums for products! Take 4D limit!
[Cheng, Dijkgraaf, Vafa]
[Aganagic, Haouzi, Kozcaz, Shakirov]

$$
\begin{aligned}
& \substack{n-m-\ell=\underline{s} \epsilon_{2}+\frac{\epsilon_{1}+\epsilon_{2}}{2} \\
s=\text { integer }} \\
& \\
& \underset{q \text {-Selberg }}{\mathcal{Z}_{2}^{\text {top }} \propto \mathcal{I}_{2} \xrightarrow{q \rightarrow 1} \int \prod_{i=1}^{s} d y_{i} y_{i}^{2 b \alpha_{1}}\left(1-y_{i}\right)^{2 b \alpha_{2}} \prod_{i<j}\left(y_{j}-y_{i}\right)^{2 b^{2}}} \quad \text { Doksenko-Fakeev Free field rep. }
\end{aligned}
$$

From $Z_{\text {top }}$ to free field integral: a change of the integration contour: Jump when passing from one chamber in the parameter space to another.

From Topological string to Free fields
[Coman,EP,Teschner]

T_{2}

$Z_{\text {top }}$ gives the integrand of the q-def. A_{N-1} generalisation of Selberg*

Is the correct free field representation (poles of 3pt function).
Integral representation is good for $q \rightarrow 1$ (4D) limit.
*We need to change contours to go from $z_{\text {top }}$ to the Selberg integral!

From Topological string to Free fields

[Coman,EP,Teschner]

For $N=3$
3 incegers: s_{1}, s_{2}, s_{12}

$$
\boldsymbol{\alpha}_{3}=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+b \sum_{k=1}^{N-1} s_{k} e_{k}
$$

$\mathrm{N}-1$ screening charges associated to simple roots.
The (N-1)(N-2)/2 Coulomb moduli correspond to extra, composite screening charges:
$a \propto \underline{s_{12}}$

> We can define a basis for the space of conformal blocks on $\mathcal{C}_{0,3}$ given a normal ordering of screening charges and a contour prescription that is labelled by these $(N-1)(N-2) / 2$ parameters.

The Coulomb moduli label the space of conformal blocks!

Conclusions and Outlook

- Partition functions for the 5D T_{N} theories (all parameters generic).
(I) Proposal for the 3pt functions of q-Toda: all 3 primaries generic.
[] Important Check: Geometric transitions: free field representation!*
(V) Can explicitly take the 4D limit using the free field representation! *

V Coulomb moduli label the space of conformal blocks!

- For $N>2$ need to change basis for the contours.
(-) Gluing two T_{2} 's: Instanton counting for trifundamental half-hypers.
- W-descendants, gluing 3-pt functions to get 4-pt functions.

[^0]
Thank you!

[^0]: *For $N>2$ contours: work in progress

