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Plan of this talk

1. The SYK model and its large N solution

2. Connection to AdS2 and assorted comments

3. Generalizations of the SYK model



Introduction to the SYK model



The Sachdev-Ye-Kitaev model
Majorana fermions in QM are matrices ψa satisfying

{ψa, ψb} = δab, a, b = 1, ...,N

A general Hamiltonian would be

Hgeneral = imabψaψb + jabcdψaψbψcψd + · · ·

The SYK Hamiltonian is

HSYK4 = jabcd ψaψbψcψd 〈j2
abcd〉 =

J2

N3

I Dimensionless coupling is βJ. Interesting behavior at βJ � 1.

I Can also consider a version with fermions interacting in groups
of q, instead of four. q →∞ and q → 2 are simpler limits.

I System “self-averages” provided q > 2.



The Sachdev-Ye-Kitaev model
Majorana fermions in QM are matrices ψa satisfying

{ψa, ψb} = δab, a, b = 1, ...,N

A general Hamiltonian would be

Hgeneral = imabψaψb + jabcdψaψbψcψd + · · ·

The SYK Hamiltonian is

HSYK4 = jabcd ψaψbψcψd 〈j2
abcd〉 =

J2

N3

I Dimensionless coupling is βJ. Interesting behavior at βJ � 1.

I Can also consider a version with fermions interacting in groups
of q, instead of four. q →∞ and q → 2 are simpler limits.

I System “self-averages” provided q > 2.



The Sachdev-Ye-Kitaev model
Majorana fermions in QM are matrices ψa satisfying

{ψa, ψb} = δab, a, b = 1, ...,N

A general Hamiltonian would be

Hgeneral = imabψaψb + jabcdψaψbψcψd + · · ·

The SYK Hamiltonian is

HSYK4 = jabcd ψaψbψcψd 〈j2
abcd〉 =

J2

N3

I Dimensionless coupling is βJ. Interesting behavior at βJ � 1.

I Can also consider a version with fermions interacting in groups
of q, instead of four. q →∞ and q → 2 are simpler limits.

I System “self-averages” provided q > 2.



The Sachdev-Ye-Kitaev model
Majorana fermions in QM are matrices ψa satisfying

{ψa, ψb} = δab, a, b = 1, ...,N

A general Hamiltonian would be

Hgeneral = imabψaψb + jabcdψaψbψcψd + · · ·

The SYK Hamiltonian is

HSYK4 = jabcd ψaψbψcψd 〈j2
abcd〉 =

J2

N3

I Dimensionless coupling is βJ. Interesting behavior at βJ � 1.

I Can also consider a version with fermions interacting in groups
of q, instead of four. q →∞ and q → 2 are simpler limits.

I System “self-averages” provided q > 2.



-15 -10 -5 0 5 10 15
0

100

200

300

400

500

600

700

800

900

1000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

800

E/J E/J

q=2 q=4

d
e
n
si

ty
 o

f 
e
ig

e
n
v
a
lu

e
s

One realization of disorder, N = 34 fermions.



Feynman diagrams

Typical diagram for G (τ) = 〈ψa(τ)ψa(0)〉 at large N:

Self-consistency equation for sum of diagrams:

G (ω) =
1

−iω − Σ(ω)
, Σ(τ) = J2G (τ)3.

[Kitaev]



IR equations

In the IR limit τJ � 1, drop the “−iω” to simplify

G (ω) =
1

−iω − Σ(ω)
≈ 1

−Σ(ω)
, Σ(τ) = J2G (τ)q−1.

Exact solution to IR equations on the line:

G (τ) ∝ sgn(τ)

|τ |2∆
, ∆ =

1

q
,

and on the circle (finite temp):

G (τ) ∝ sgn(τ)

sin2∆(πτβ )
.

[Sachdev,Ye][Parcollet,Georges]

SL(2,R) covariant under x ≡ tan πτ
β →

ax+b
cx+d .



Plots of G (τ) = 〈ψ(τ)ψ(0)〉β
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The decay of the two point function

In real time, we have

G (t) ∝ 1

sinh2∆ πt
β

which gives exponential decay. What is happening is ψ is leaking
into the space of more complicated operators, ψ → ψψψψ...



Systematic approach to SYK at large N



The large N action
The path integral for fixed disorder is

Z (β) =

∫
Dψe−

∫ β
0 iψ̇(τ)ψ(τ)+jabcdψa(τ)ψb(τ)ψc (τ)ψd (τ).

Averaging over jabcd with Gaussian measure gives nonlocal-in-time
theory. Can introduce new fields G ,Σ to simplify. Σ is a Lagrange
multiplier that sets G (τ1, τ2) = 1

N

∑
a ψa(τ1)ψa(τ2).

After
integrating out the fermions,

〈Z (β)〉J =

∫
DG DΣ e−N I (G ,Σ)

I (G ,Σ) = −1

2
log det(∂τ − Σ)

+
1

2

∫ β

0
dτ1dτ2

[
Σ(τ1, τ2)G (τ1, τ2)− J2

q
G (τ1, τ2)q

]
Saddle point eqs: G = [∂τ − Σ]−1, Σ(τ1, τ2) = J2G (τ1, τ2)q−1.
[Parcollet,Georges,Sachdev][Kitaev]
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The large N action: entropy

To get large N thermodynamics, plug G∗,Σ∗ back into the action,
Z (β) ≈ e−N I (G∗,Σ∗).
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[Parcollet,Georges,Sachdev].
Procedurally similar to how we compute entropy using gravity.



The large N action: emergent conformal symmetry

In the IR limit, we drop the ∂τ term in the effective action, so it is

I = −1

2
log det(Σ) +

1

2

∫ β

0
dτ1dτ2

[
Σ(τ1, τ2)G (τ1, τ2)− J2

q
G (τ1, τ2)q

]
.

This is reparametrization invariant, under [Kitaev]

G (τ1, τ2)→
(
φ′(τ1)φ′(τ2)

)1/q
G
(
φ(τ1), φ(τ2)

)
Σ(τ1, τ2)→

(
φ′(τ1)φ′(τ2)

)1−1/q
Σ
(
φ(τ1), φ(τ2)

)
.

So in the strict IR limit, the theory has diff (S1) symmetry.

But
our solution (sin πτ

β )−2∆ only has SL(2,R). Expanding about this
saddle, we expect Nambu-Goldstone bosons living in the space

space of NG bosons =
full group

preserved subgroup
=

diff (S1)

SL(2,R)

Integration over these zero modes leads to divergences.
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The large N action: integration space
Beyond the strict IR limit, the zero modes get lifted slightly

Σ

G

(G , Σ )
*    *

(G , Σ )ϕ    ϕ

action along here 

small ~ N/βJ

true 
saddle pt

action elsewhere 

is large ~ N

The soft directions are parametrized by φ ∈ diff(S1)/SL(2,R)

Gφ ≡
(
φ′(τ1)φ′(τ2)

)∆
G∗
(
φ(τ1), φ(τ2)

)
.

SL(2,R) acts as x ≡ tan φ
2 →

ax+b
cx+d . EFT suggests the action

[Kitaev][Maldacena, DS]:

ISch = −Nα

J

∫ β

0
dτ Sch(tanφ/2, τ), Sch(x , τ) ≡

(
x ′′

x ′

)′
−1

2

x ′′2

x ′2
.
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The large N action: mini summary

1. Can rewrite SYK in terms of bilocal fields G ,Σ

〈Z 〉J =

∫
DG DΣ e−N I (G ,Σ)

2. In IR, I (G ,Σ) has spontaneously broken conformal symmetry.
Dominant fluctuations are reparametrizations of the saddle

Gφ ≡
(
φ′(τ1)φ′(τ2)

)∆
G∗
(
φ(τ1), φ(τ2)

)
.

3. Leading action for φ is the “Schwarzian theory”

ISch = −Nα

J

∫ β

0
dτ Sch(tanφ/2, τ) =

Nα

2J

∫ β

0

(
φ′′2

φ′2
− φ′2

)
,

breaks the physical conformal symmetry.



Four comments on the relation to AdS2 and
other things



(1) Nearly AdS2 gravity

A simple theory of 2d gravity described by gµν :

I = − f0

G

[∫
bulk

√
gR + 2

∫
bdy

K

]
[Teitelboim][Jackiw][Almheiri,Polchinski]

This turns out to be exactly equivalent to the Schwarzian theory!
Path integral over f implies R + 2 = 0. Path integral over metrics
then reduces to a sum over cut-out shapes from hyperbolic disk.
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I = − f0

G���
���

���
���:

2π[∫
bulk

√
gR + 2

∫
bdy

K

]
= −S0
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(1) Nearly AdS2 gravity

total length = 

IJT = −S0 −
2

G

∫
bdy

f K −→ −S0 −
2fr
G

∫ β

0
dτ Sch(tanφ/2, τ)

[Maldacena, DS, Z. Yang] see also [Jensen][Engelsoy, Mertens, Verlinde]
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(1) Nearly AdS2 gravity

Euclidean Lorentzian 

SYK is a “QM completion” of the JT black hole.
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(2) Chaos and the Schwarzian theory

Chaos can be diagnosed using e.g.

〈{ψa(0), ψb(t)}2〉 ∝ 1

N
eλLt a

b
SYK saturates the bound λL ≤ 2π

β .

Easy to see in variables of Schwarzian theory. Expand
φ(τ) = τ + ε(τ). Then have solutions

ε(τ) = 1, τ, e
2π
β
iτ
, e−

2π
β
iτ =⇒ ε(t) ∝ e

2π
β
t
.

Linearized SL(2,R) gauge transformations are

δε(τ) = 1, e
2π
β
iτ
, e−

2π
β
iτ
.
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(2) Chaos and the Schwarzian theory



(3) Very low temperatures
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For βJ � N, large fluctuations in φ.

However, ZSch turns out to
be one-loop exact,

ZSch(β) =

∫
dµ[φ]

SL(2,R)
e

Nα
J

∫ β
0 dτSch(tanφ/2,τ) =

#

(βJ)3/2
e

2π2Nα
βJ .

[CGHPSSSST][DS,Witten][Bagrets,Altland,Kamenev][Z. Yang][Mertens,Turiaci,Verlinde]

Gives us control of low-energy density of states:

ZSch(β) =

∫ ∞
E0

dEρ(E )e−βE , ρ(E ) ∝ sinh
√

C (E − E0).
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(4) Massive modes

Other directions in G ,Σ space correspond to roughly
integer-spaced spectrum of massive modes propagating in AdS2.

Σ

G

(G , Σ )
*    *

(G , Σ )ϕ    ϕ

action along here 

small ~ N/βJ

true 
saddle pt

action elsewhere 

is large ~ N

Interactions between modes will be important for sorting out bulk
theory! Requires higher point functions of fermions [Gross,Rosenhaus].



Generalizations of SYK



Generalizations of SYK

I global symmetry (e.g. complex fermions)
[Sachdev][Davison,Fu,Georges,Gu,Jensen,Sachdev]

I more flavors [Gross,Rosenhaus]

I additional quadratic fermions [Banerjee,Altman]

[Chen,Fan,Chen,Zhai,Zhang]

I lattices of SYK [Gu,Qi,DS][Song,C.M.Jian,Balents][S.K.Jian,Yao]

I supersymmetry [Fu, Gaiotto, Maldacena, Sachdev]

I models without disorder [Witten][Klebanov,Tarnopolsky][Gurau][Peng,

Spradlin,Volovich] [Ferrari][Peng]

I higher d field theory models [Turiaci,

Verlinde][Berkooz,Narayan,Rozali,Simon][Murugan,DS,Witten]



Supersymmetry

[Fu, Gaiotto, Maldacena, Sachdev]

N = 1 version, using Majorana fermions

H = Q2, Q = iCabcψaψbψc

N = 2 version, using complex fermions

H = {Q,Q}, Q = iCabcψaψbψc , Q = iC ∗abcψaψbψc
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Low-energy effective theory is N = 1 or N = 2 super-Schwarzian.



Disorder jabcd is unfamiliar for holography

I No global symmetry so no singlet condition to impose.

I What is the bulk interpretation of the different jabcd?



Models without disorder!

[Witten][Gurau][Klebanov,Tarnopolsky]

One version: organize N fermions into a tensor χabc where
a = 1, ..., n and N = n3. The Hamiltonian is

H = g χa1b1c1χa1b2c2χa2b1c2χa2b2c1

I Same as SYK at order one and order 1/N.

I O(n)3 symmetry. Can gauge, consider only singlet operators.
(Their number grows very rapidly with energy.)



Higher dimensions
How to generalize to continuum models in higher d?

1. Try with fermions: [Turiaci, Verlinde][Berkooz,Narayan,Rozali,Simon]

I =

∫
d2x

[
ψa∂̄ψa + ψ̄a∂ψ̄a + Jab;cdψaψbψ̄c ψ̄d

]
2. Try with bosons: [Klebanov,Tarnopolsky][Murugan,DS,Witten]

I =

∫
d2x

[
∂φa∂̄φa + Jabcdφaφbφcφd

]
3. Try with superfields, (1, 1) supersymmetry [Murugan,DS,Witten]

I =

∫
d2xd2θ [DθΦaDθ̄Φa + CabcΦaΦbΦc ]

⊃
∫

d2x Cabcφaψbψ̄c + CabcCab′c ′φbφcφb′φc ′

Twist of spin 4: E−J ≈ 0.29. Chaos exp.: λL ≈ 0.58× 2π
β .



A puzzle!

What are the corrections to a large N theory that tell us the
spectrum is discrete at finite N?

I For large |β|, good approximation to Z just from Schwarzian:

ZSch(β) =
#

β3/2
eC/β.

I In QM Z (β0 + it) should not vanish for large t. What fixes
this in the full G ,Σ theory?1

1See talk by Shenker for more precise statement with two replicas.



Summary

I SYK is a solvable but strongly interacting model.

I Low energy theory is Schwarzian = JT gravity in AdS2.

I Many interesting generalizations, puzzles remain!



Higher dimensions

These flow to a CFT at large N. Sketch of four point function:

〈4pt〉(χ, χ̄) =
1

N

∑
J

∫
1+iR

dE C (E , J)GE ,J(χ, χ̄).

C (E , J) = bunch of gamma functions, GE ,J = conformal block.

I Can deform E contour to get OPE expansion, defined by
poles in C (E , J). Twist of lightest spin 4 op. is E−J ≈ 0.29.

I Can represent J sum as integral and deform J contour to get
Regge/Chaos limit, exponent is λL ≈ 0.58× 2π

β .

Theory has O(1) interaction strength at large N. Not enough for a
local gravity dual.


