Review talk: What's up with the SYK model?

Douglas Stanford

IAS

June 26, 2017

The SYK model is a strongly interacting quantum system that is solvable at large N.

The SYK model is a strongly interacting quantum system that is solvable at large N.

Plan of this talk

1. The SYK model and its large N solution
2. Connection to $A d S_{2}$ and assorted comments
3. Generalizations of the SYK model

Introduction to the SYK model

The Sachdev-Ye-Kitaev model

Majorana fermions in QM are matrices ψ_{a} satisfying

$$
\left\{\psi_{a}, \psi_{b}\right\}=\delta_{a b}, \quad a, b=1, \ldots, N
$$

The Sachdev-Ye-Kitaev model

Majorana fermions in QM are matrices ψ_{a} satisfying

$$
\left\{\psi_{a}, \psi_{b}\right\}=\delta_{a b}, \quad a, b=1, \ldots, N
$$

A general Hamiltonian would be

$$
H_{\text {general }}=i m_{a b} \psi_{a} \psi_{b}+j_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}+\cdots
$$

The Sachdev-Ye-Kitaev model

Majorana fermions in QM are matrices ψ_{a} satisfying

$$
\left\{\psi_{a}, \psi_{b}\right\}=\delta_{a b}, \quad a, b=1, \ldots, N
$$

A general Hamiltonian would be

$$
H_{\text {general }}=i m_{a b} \psi_{a} \psi_{b}+j_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}+\cdots
$$

The SYK Hamiltonian is

$$
H_{S Y K_{4}}=j_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d} \quad\left\langle j_{a b c d}^{2}\right\rangle=\frac{J^{2}}{N^{3}}
$$

The Sachdev-Ye-Kitaev model

Majorana fermions in QM are matrices ψ_{a} satisfying

$$
\left\{\psi_{a}, \psi_{b}\right\}=\delta_{a b}, \quad a, b=1, \ldots, N
$$

A general Hamiltonian would be

$$
H_{\text {general }}=i m_{a b} \psi_{a} \psi_{b}+j_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d}+\cdots
$$

The SYK Hamiltonian is

$$
H_{S Y K_{4}}=j_{a b c d} \psi_{a} \psi_{b} \psi_{c} \psi_{d} \quad\left\langle j_{a b c d}^{2}\right\rangle=\frac{J^{2}}{N^{3}}
$$

- Dimensionless coupling is $\beta \mathrm{J}$. Interesting behavior at $\beta \mathrm{J} \gg 1$.
- Can also consider a version with fermions interacting in groups of q, instead of four. $q \rightarrow \infty$ and $q \rightarrow 2$ are simpler limits.
- System "self-averages" provided $q>2$.

One realization of disorder, $N=34$ fermions.

Feynman diagrams

Typical diagram for $G(\tau)=\left\langle\psi_{a}(\tau) \psi_{a}(0)\right\rangle$ at large N :

Self-consistency equation for sum of diagrams:

$$
G(\omega)=\frac{1}{-i \omega-\Sigma(\omega)}, \quad \Sigma(\tau)=J^{2} G(\tau)^{3}
$$

[Kitaev]

IR equations

In the IR limit $\tau J \gg 1$, drop the " $-i \omega$ " to simplify

$$
G(\omega)=\frac{1}{-i \omega-\Sigma(\omega)} \approx \frac{1}{-\Sigma(\omega)}, \quad \Sigma(\tau)=J^{2} G(\tau)^{q-1} .
$$

Exact solution to IR equations on the line:

$$
G(\tau) \propto \frac{\operatorname{sgn}(\tau)}{|\tau|^{2 \Delta}}, \quad \Delta=\frac{1}{q},
$$

and on the circle (finite temp):

$$
G(\tau) \propto \frac{\operatorname{sgn}(\tau)}{\sin ^{2 \Delta}\left(\frac{\pi \tau}{\beta}\right)}
$$

[Sachdev,Ye][Parcollet,Georges]
$S L(2, R)$ covariant under $x \equiv \tan \frac{\pi \tau}{\beta} \rightarrow \frac{a x+b}{c x+d}$.

Plots of $G(\tau)=\langle\psi(\tau) \psi(0)\rangle_{\beta}$

The decay of the two point function

In real time, we have

$$
G(t) \propto \frac{1}{\sinh ^{2 \Delta} \frac{\pi t}{\beta}}
$$

which gives exponential decay. What is happening is ψ is leaking into the space of more complicated operators, $\psi \rightarrow \psi \psi \psi \psi \ldots$

Systematic approach to SYK at large N

The large N action

The path integral for fixed disorder is

$$
Z(\beta)=\int D \psi e^{-\int_{0}^{\beta} i \dot{\psi}(\tau) \psi(\tau)+j_{a b c d} \psi_{a}(\tau) \psi_{b}(\tau) \psi_{c}(\tau) \psi_{d}(\tau)}
$$

Averaging over $j_{a b c d}$ with Gaussian measure gives nonlocal-in-time theory. Can introduce new fields G, Σ to simplify. Σ is a Lagrange multiplier that sets $G\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N} \sum_{a} \psi_{a}\left(\tau_{1}\right) \psi_{a}\left(\tau_{2}\right)$.

The large N action

The path integral for fixed disorder is

$$
Z(\beta)=\int D \psi e^{-\int_{0}^{\beta} i \dot{\psi}(\tau) \psi(\tau)+j_{a b c d} \psi_{a}(\tau) \psi_{b}(\tau) \psi_{c}(\tau) \psi_{d}(\tau)}
$$

Averaging over $j_{a b c d}$ with Gaussian measure gives nonlocal-in-time theory. Can introduce new fields G, Σ to simplify. Σ is a Lagrange multiplier that sets $G\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N} \sum_{a} \psi_{a}\left(\tau_{1}\right) \psi_{a}\left(\tau_{2}\right)$. After integrating out the fermions,

$$
\begin{aligned}
\langle Z(\beta)\rangle_{J}= & \int D G D \Sigma e^{-N I(G, \Sigma)} \\
I(G, \Sigma)=- & \frac{1}{2} \log \operatorname{det}\left(\partial_{\tau}-\Sigma\right) \\
& +\frac{1}{2} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left[\Sigma\left(\tau_{1}, \tau_{2}\right) G\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{q} G\left(\tau_{1}, \tau_{2}\right)^{q}\right]
\end{aligned}
$$

The large N action

The path integral for fixed disorder is

$$
Z(\beta)=\int D \psi e^{-\int_{0}^{\beta} i \dot{\psi}(\tau) \psi(\tau)+j_{a b c d} \psi_{a}(\tau) \psi_{b}(\tau) \psi_{c}(\tau) \psi_{d}(\tau)}
$$

Averaging over $j_{a b c d}$ with Gaussian measure gives nonlocal-in-time theory. Can introduce new fields G, Σ to simplify. Σ is a Lagrange multiplier that sets $G\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N} \sum_{a} \psi_{a}\left(\tau_{1}\right) \psi_{a}\left(\tau_{2}\right)$. After integrating out the fermions,

$$
\begin{aligned}
\langle Z(\beta)\rangle_{J}= & \int D G D \Sigma e^{-N I(G, \Sigma)} \\
I(G, \Sigma)=- & \frac{1}{2} \log \operatorname{det}\left(\partial_{\tau}-\Sigma\right) \\
& +\frac{1}{2} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left[\Sigma\left(\tau_{1}, \tau_{2}\right) G\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{q} G\left(\tau_{1}, \tau_{2}\right)^{q}\right]
\end{aligned}
$$

Saddle point eqs: $G=\left[\partial_{\tau}-\Sigma\right]^{-1}, \Sigma\left(\tau_{1}, \tau_{2}\right)=J^{2} G\left(\tau_{1}, \tau_{2}\right)^{q-1}$.
[Parcollet,Georges,Sachdev][Kitaev]

The large N action: entropy

To get large N thermodynamics, plug G_{*}, Σ_{*} back into the action, $Z(\beta) \approx e^{-N I\left(G_{*}, \Sigma_{*}\right)}$.

[Parcollet,Georges,Sachdev].
Procedurally similar to how we compute entropy using gravity.

The large N action: emergent conformal symmetry

In the IR limit, we drop the ∂_{τ} term in the effective action, so it is
$I=-\frac{1}{2} \log \operatorname{det}(\Sigma)+\frac{1}{2} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left[\Sigma\left(\tau_{1}, \tau_{2}\right) G\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{q} G\left(\tau_{1}, \tau_{2}\right)^{q}\right]$.
This is reparametrization invariant, under [Kitaev]

$$
\begin{aligned}
& G\left(\tau_{1}, \tau_{2}\right) \rightarrow\left(\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)\right)^{1 / q} G\left(\phi\left(\tau_{1}\right), \phi\left(\tau_{2}\right)\right) \\
& \Sigma\left(\tau_{1}, \tau_{2}\right) \rightarrow\left(\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)\right)^{1-1 / q} \Sigma\left(\phi\left(\tau_{1}\right), \phi\left(\tau_{2}\right)\right) .
\end{aligned}
$$

So in the strict IR limit, the theory has $\operatorname{diff}\left(S^{1}\right)$ symmetry.

The large N action: emergent conformal symmetry

In the IR limit, we drop the ∂_{τ} term in the effective action, so it is
$I=-\frac{1}{2} \log \operatorname{det}(\Sigma)+\frac{1}{2} \int_{0}^{\beta} d \tau_{1} d \tau_{2}\left[\Sigma\left(\tau_{1}, \tau_{2}\right) G\left(\tau_{1}, \tau_{2}\right)-\frac{J^{2}}{q} G\left(\tau_{1}, \tau_{2}\right)^{q}\right]$.
This is reparametrization invariant, under [Kitaev]

$$
\begin{aligned}
& G\left(\tau_{1}, \tau_{2}\right) \rightarrow\left(\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)\right)^{1 / q} G\left(\phi\left(\tau_{1}\right), \phi\left(\tau_{2}\right)\right) \\
& \Sigma\left(\tau_{1}, \tau_{2}\right) \rightarrow\left(\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)\right)^{1-1 / q} \Sigma\left(\phi\left(\tau_{1}\right), \phi\left(\tau_{2}\right)\right) .
\end{aligned}
$$

So in the strict IR limit, the theory has $\operatorname{diff}\left(S^{1}\right)$ symmetry. But our solution $\left(\sin \frac{\pi \tau}{\beta}\right)^{-2 \Delta}$ only has $S L(2, R)$. Expanding about this saddle, we expect Nambu-Goldstone bosons living in the space

$$
\text { space of NG bosons }=\frac{\text { full group }}{\text { preserved subgroup }}=\frac{\operatorname{diff}\left(S^{1}\right)}{S L(2, R)}
$$

Integration over these zero modes leads to divergences.

The large N action: integration space

Beyond the strict IR limit, the zero modes get lifted slightly

The soft directions are parametrized by $\phi \in \operatorname{diff}\left(S^{1}\right) / S L(2, R)$

$$
G_{\phi} \equiv\left(\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)\right)^{\Delta} G_{*}\left(\phi\left(\tau_{1}\right), \phi\left(\tau_{2}\right)\right) .
$$

The large N action: integration space

Beyond the strict IR limit, the zero modes get lifted slightly

The soft directions are parametrized by $\phi \in \operatorname{diff}\left(S^{1}\right) / S L(2, R)$

$$
G_{\phi} \equiv\left(\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)\right)^{\Delta} G_{*}\left(\phi\left(\tau_{1}\right), \phi\left(\tau_{2}\right)\right) .
$$

$S L(2, R)$ acts as $x \equiv \tan \frac{\phi}{2} \rightarrow \frac{a x+b}{c x+d}$. EFT suggests the action [Kitaev][Maldacena, DS]:

$$
I_{S c h}=-\frac{N \alpha}{J} \int_{0}^{\beta} d \tau \operatorname{Sch}(\tan \phi / 2, \tau), \quad \operatorname{Sch}(x, \tau) \equiv\left(\frac{x^{\prime \prime}}{x^{\prime}}\right)^{\prime}-\frac{1}{2} \frac{x^{\prime \prime 2}}{x^{\prime 2}}
$$

The large N action: mini summary

1. Can rewrite SYK in terms of bilocal fields G, Σ

$$
\langle Z\rangle_{J}=\int D G D \Sigma e^{-N I(G, \Sigma)}
$$

2. In IR, I(G, Σ) has spontaneously broken conformal symmetry. Dominant fluctuations are reparametrizations of the saddle

$$
G_{\phi} \equiv\left(\phi^{\prime}\left(\tau_{1}\right) \phi^{\prime}\left(\tau_{2}\right)\right)^{\Delta} G_{*}\left(\phi\left(\tau_{1}\right), \phi\left(\tau_{2}\right)\right)
$$

3. Leading action for ϕ is the "Schwarzian theory"

$$
I_{S c h}=-\frac{N \alpha}{J} \int_{0}^{\beta} d \tau \operatorname{Sch}(\tan \phi / 2, \tau)=\frac{N \alpha}{2 J} \int_{0}^{\beta}\left(\frac{\phi^{\prime \prime 2}}{\phi^{\prime 2}}-\phi^{\prime 2}\right)
$$

breaks the physical conformal symmetry.

Four comments on the relation to $A d S_{2}$ and other things

(1) Nearly $A d S_{2}$ gravity

A simple theory of 2 d gravity described by $g_{\mu \nu}$:

$$
I=-\frac{f_{0}}{G}\left[\int_{b u l k} \sqrt{g} R+2 \int_{b d y} K\right]
$$

(1) Nearly $A d S_{2}$ gravity

A too-simple theory of gravity in $A d S_{2}$ described by $g_{\mu \nu}$:

$$
I=-\frac{f_{0}}{G}\left[\int_{\text {butk }} \sqrt{g} R+2 \int_{\text {bdy }} K\right]^{2 \pi}=-S_{0}
$$

(1) Nearly $A d S_{2}$ gravity

A simple theory of gravity in $A d S_{2}$ described by $\left(g_{\mu \nu}, f\right)$:

$$
I_{J T}=-S_{0}-\frac{1}{G}\left[\int_{b u l k} \sqrt{g}(R+2) f+2 \int_{b d y} f K\right]
$$

[Teitelboim][Jackiw][Almheiri,Polchinski]

(1) Nearly $A d S_{2}$ gravity

A simple theory of gravity in $A d S_{2}$ described by $\left(g_{\mu \nu}, f\right)$:

$$
I_{J T}=-S_{0}-\frac{1}{G}\left[\int_{b u l k} \sqrt{g}(R+2) f+2 \int_{b d y} f K\right]
$$

[Teitelboim][Jackiw][Almheiri,Polchinski]
Reduces to the Schwarzian theory!

(1) Nearly $A d S_{2}$ gravity

A simple theory of gravity in $A d S_{2}$ described by $\left(g_{\mu \nu}, f\right)$:

$$
I_{J T}=-S_{0}-\frac{1}{G}\left[\int_{b u l k} \sqrt{g}(R+2) f+2 \int_{b d y} f K\right]
$$

[Teitelboim][Jackiw][Almheiri,Polchinski]
Reduces to the Schwarzian theory!
Step 1: integral over f implies $R+2=0$. Step 2: integral over metrics then reduces to cut-outs from hyperbolic disk.
(1) Nearly $A d S_{2}$ gravity

(1) Nearly $A d S_{2}$ gravity

[Maldacena, DS, Z. Yang] see also [Jensen][Engelsoy, Mertens, Verlinde]

(1) Nearly $A d S_{2}$ gravity

(1) Nearly $A d S_{2}$ gravity

Euclidean

Lorentzian

SYK is a "QM completion" of the JT black hole.

(2) Chaos and the Schwarzian theory

Chaos can be diagnosed using e.g.

$$
\left\langle\left\{\psi_{a}(0), \psi_{b}(t)\right\}^{2}\right\rangle \propto \frac{1}{N} e^{\lambda_{l} t}
$$

SYK saturates the bound $\lambda_{L} \leq \frac{2 \pi}{\beta}$.

(2) Chaos and the Schwarzian theory

Chaos can be diagnosed using e.g.

$$
\left\langle\left\{\psi_{a}(0), \psi_{b}(t)\right\}^{2}\right\rangle \propto \frac{1}{N} e^{\lambda_{L} t}
$$

SYK saturates the bound $\lambda_{L} \leq \frac{2 \pi}{\beta}$.

Easy to see in variables of Schwarzian theory. Expand $\phi(\tau)=\tau+\epsilon(\tau)$. Then have solutions

$$
\epsilon(\tau)=1, \tau, e^{\frac{2 \pi}{\beta} i \tau}, e^{-\frac{2 \pi}{\beta} i \tau} \quad \Longrightarrow \quad \epsilon(t) \propto e^{\frac{2 \pi}{\beta} t}
$$

(2) Chaos and the Schwarzian theory

Chaos can be diagnosed using e.g.

$$
\left\langle\left\{\psi_{a}(0), \psi_{b}(t)\right\}^{2}\right\rangle \propto \frac{1}{N} e^{\lambda_{L} t}
$$

SYK saturates the bound $\lambda_{L} \leq \frac{2 \pi}{\beta}$.

Easy to see in variables of Schwarzian theory. Expand $\phi(\tau)=\tau+\epsilon(\tau)$. Then have solutions

$$
\epsilon(\tau)=1, \tau, e^{\frac{2 \pi}{\beta} i \tau}, e^{-\frac{2 \pi}{\beta} i \tau} \quad \Longrightarrow \quad \epsilon(t) \propto e^{\frac{2 \pi}{\beta} t}
$$

Linearized $S L(2, R)$ gauge transformations are

$$
\delta \epsilon(\tau)=1, e^{\frac{2 \pi}{\beta} i \tau}, e^{-\frac{2 \pi}{\beta} i \tau} .
$$

(2) Chaos and the Schwarzian theory

(3) Very low temperatures

For $\beta J \gg N$, large fluctuations in ϕ.

(3) Very low temperatures

$\beta J \approx N$

$$
\beta J \gg N
$$

For $\beta J \gg N$, large fluctuations in ϕ. However, $Z_{S c h}$ turns out to be one-loop exact,

$$
Z_{S c h}(\beta)=\int \frac{d \mu[\phi]}{S L(2, R)} e^{\frac{N_{\alpha}}{J} \int_{0}^{\beta} d \tau \operatorname{Sch}(\tan \phi / 2, \tau)}=\frac{\#}{(\beta J)^{3 / 2}} e^{\frac{2 \pi^{2} N_{\alpha}}{\beta J}}
$$

[CGHPSSSST][DS,Witten][Bagrets,Altland,Kamenev][Z. Yang][Mertens,Turiaci,Verlinde] Gives us control of low-energy density of states:

$$
Z_{S c h}(\beta)=\int_{E_{0}}^{\infty} d E \rho(E) e^{-\beta E}, \quad \rho(E) \propto \sinh \sqrt{C\left(E-E_{0}\right)}
$$

(4) Massive modes

Other directions in G, Σ space correspond to roughly integer-spaced spectrum of massive modes propagating in $A d S_{2}$.

Interactions between modes will be important for sorting out bulk theory! Requires higher point functions of fermions [Gross,Rosenhaus].

Generalizations of SYK

Generalizations of SYK

- global symmetry (e.g. complex fermions)
[Sachdev][Davison,Fu,Georges,Gu,Jensen,Sachdev]
- more flavors [Gross,Rosenhaus]
- additional quadratic fermions [Banerjee,Altman] [Chen,Fan,Chen,Zhai,Zhang]
- lattices of SYK [Gu, Qi,DS][Song,C.M.Jian,Balents][S.K.Jian,Yao]
- supersymmetry [Fu, Gaiotto, Maldacena, Sachdev]
- models without disorder [Witten][Klebanov,Tarnopolsky][Gurau][Peng, Spradlin,Volovich] [Ferrari][Peng]
- higher d field theory models [Turiaci,

Verlinde][Berkooz,Narayan,Rozali,Simon][Murugan,DS,Witten]

Supersymmetry

[Fu, Gaiotto, Maldacena, Sachdev]
$\mathcal{N}=1$ version, using Majorana fermions

$$
H=Q^{2}, \quad Q=i C_{a b c} \psi_{a} \psi_{b} \psi_{c}
$$

$\mathcal{N}=2$ version, using complex fermions

$$
H=\{Q, \bar{Q}\}, \quad Q=i C_{a b c} \psi_{a} \psi_{b} \psi_{c}, \quad \bar{Q}=i C_{a b c}^{*} \bar{\psi}_{a} \bar{\psi}_{b} \bar{\psi}_{c}
$$

Low-energy effective theory is $\mathcal{N}=1$ or $\mathcal{N}=2$ super-Schwarzian.

Disorder $j_{a b c d}$ is unfamiliar for holography

- No global symmetry so no singlet condition to impose.
- What is the bulk interpretation of the different $j_{a b c d}$?

Models without disorder!

[Witten][Gurau][Klebanov, Tarnopolsky]

One version: organize N fermions into a tensor $\chi_{a b c}$ where $a=1, \ldots, n$ and $N=n^{3}$. The Hamiltonian is

$$
H=g \chi_{a_{1} b_{1} c_{1}} \chi_{a_{1} b_{2} c_{2}} \chi_{a_{2} b_{1} c_{2}} \chi_{a_{2} b_{2} c_{1}}
$$

- Same as SYK at order one and order $1 / N$.
- $O(n)^{3}$ symmetry. Can gauge, consider only singlet operators. (Their number grows very rapidly with energy.)

Higher dimensions

How to generalize to continuum models in higher d?

1. Try with fermions: [Turiaci, Verlinde][Berkooz,Narayan,Rozali,Simon]

$$
I=\int d^{2} x\left[\psi_{a} \bar{\partial} \psi_{a}+\bar{\psi}_{a} \partial \bar{\psi}_{a}+J_{a b ; c d} \psi_{a} \psi_{b} \bar{\psi}_{c} \bar{\psi}_{d}\right]
$$

2. Try with bosons: [Klebanov,Tarnopolsky][Murugan,DS, Witten]

$$
I=\int d^{2} x\left[\partial \phi_{a} \bar{\partial} \phi_{a}+J_{a b c d} \phi_{a} \phi_{b} \phi_{c} \phi_{d}\right]
$$

3. Try with superfields, $(1,1)$ supersymmetry [Murugan,DS,Witten]

$$
\begin{aligned}
I & =\int d^{2} x d^{2} \theta\left[D_{\theta} \Phi_{a} D_{\bar{\theta}} \Phi_{a}+C_{a b c} \Phi_{a} \Phi_{b} \Phi_{c}\right] \\
& \supset \int d^{2} x C_{a b c} \phi_{a} \psi_{b} \bar{\psi}_{c}+C_{a b c} C_{a b^{\prime} c^{\prime}} \phi_{b} \phi_{c} \phi_{b^{\prime}} \phi_{c^{\prime}}
\end{aligned}
$$

Twist of $\operatorname{spin} 4: E-J \approx 0.29$. Chaos exp.: $\lambda_{L} \approx 0.58 \times \frac{2 \pi}{\beta}$.

A puzzle!

What are the corrections to a large N theory that tell us the spectrum is discrete at finite N ?

- For large $|\beta|$, good approximation to Z just from Schwarzian:

$$
Z_{S c h}(\beta)=\frac{\#}{\beta^{3 / 2}} e^{C / \beta}
$$

- In QM $Z\left(\beta_{0}+i t\right)$ should not vanish for large t. What fixes this in the full G, Σ theory? ${ }^{1}$
${ }^{1}$ See talk by Shenker for more precise statement with two replicas.

Summary

- SYK is a solvable but strongly interacting model.
- Low energy theory is Schwarzian $=$ JT gravity in $A d S_{2}$.
- Many interesting generalizations, puzzles remain!

Higher dimensions

These flow to a CFT at large N. Sketch of four point function:

$$
\langle 4 p t\rangle(\chi, \bar{\chi})=\frac{1}{N} \sum_{J} \int_{1+i \mathbb{R}} d E C(E, J) G_{E, J}(\chi, \bar{\chi})
$$

$C(E, J)=$ bunch of gamma functions, $G_{E, J}=$ conformal block.

- Can deform E contour to get OPE expansion, defined by poles in $C(E, J)$. Twist of lightest spin 4 op. is $E-J \approx 0.29$.
- Can represent J sum as integral and deform J contour to get Regge/Chaos limit, exponent is $\lambda_{L} \approx 0.58 \times \frac{2 \pi}{\beta}$.
Theory has $O(1)$ interaction strength at large N. Not enough for a local gravity dual.

