Black holes and random matrices

Stephen Shenker
Stanford University

Strings 2017

A question

- What accounts for the finiteness of the black hole entropy-from the bulk point of view?

A question

- What accounts for the finiteness of the black hole entropy-from the bulk point of view?
- The stakes are high here. Many approaches to understanding the bulk-
- TFD/Eternal black hole
- Ryu-Takayanagi
- Geometry from entanglement
- Tensor networks
- $E R=E P R$
- Code subspaces
- ...
suggest that any complete bulk description of quantum gravity must be able to describe these states.

A diagnostic

- A simple diagnostic of a discrete spectrum [Maldacena]. Long time behavior of $\langle O(t) O(0)\rangle$. (O is a bulk (smeared boundary) operator)

$$
\left.\langle O(t) O(0)\rangle=\sum_{m, n} e^{-\beta E_{m}}|\langle m| O| n\right\rangle\left.\right|^{2} e^{i\left(E_{m}-E_{n}\right) t} / \sum_{n} e^{-\beta E_{n}}
$$

A diagnostic

- A simple diagnostic of a discrete spectrum [Maldacena]. Long time behavior of $\langle O(t) O(0)\rangle$. (O is a bulk (smeared boundary) operator)

$$
\left.\langle O(t) O(0)\rangle=\sum_{m, n} e^{-\beta E_{m}}|\langle m| O| n\right\rangle\left.\right|^{2} e^{i\left(E_{m}-E_{n}\right) t} / \sum_{n} e^{-\beta E_{n}}
$$

- At long times the phases from the chaotic discrete spectrum cause $\langle O(t) O(0)\rangle$ to oscillate in an erratic way. It becomes exponentially small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])

A diagnostic

- A simple diagnostic of a discrete spectrum [Maldacena]. Long time behavior of $\langle O(t) O(0)\rangle$. (O is a bulk (smeared boundary) operator)

$$
\left.\langle O(t) O(0)\rangle=\sum_{m, n} e^{-\beta E_{m}}|\langle m| O| n\right\rangle\left.\right|^{2} e^{i\left(E_{m}-E_{n}\right) t} / \sum_{n} e^{-\beta E_{n}}
$$

- At long times the phases from the chaotic discrete spectrum cause $\langle O(t) O(0)\rangle$ to oscillate in an erratic way. It becomes exponentially small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])
- To focus on the oscillating phases remove the matrix elements. Use a related diagnostic: [Papadodimas-Raju]

$$
\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}=Z(\beta+i t) Z(\beta-i t)=Z(t) Z^{*}(t)
$$

A diagnostic

- A simple diagnostic of a discrete spectrum [Maldacena]. Long time behavior of $\langle O(t) O(0)\rangle$. (O is a bulk (smeared boundary) operator)

$$
\left.\langle O(t) O(0)\rangle=\sum_{m, n} e^{-\beta E_{m}}|\langle m| O| n\right\rangle\left.\right|^{2} e^{i\left(E_{m}-E_{n}\right) t} / \sum_{n} e^{-\beta E_{n}}
$$

- At long times the phases from the chaotic discrete spectrum cause $\langle O(t) O(0)\rangle$ to oscillate in an erratic way. It becomes exponentially small and no longer decreases.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])
- To focus on the oscillating phases remove the matrix elements. Use a related diagnostic: [Papadodimas-Raju]

$$
\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}=Z(\beta+i t) Z(\beta-i t)=Z(t) Z^{*}(t)
$$

- The "spectral form factor"

Properties of $Z(t) Z^{*}(t)$

$$
Z(t) Z^{*}(t)=\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}
$$

- $Z(\beta, 0) Z^{*}(\beta, 0)=Z(\beta)^{2}\left(=L^{2}=e^{2 S}\right.$ for $\left.\beta=0\right)$

Properties of $Z(t) Z^{*}(t)$

$$
Z(t) Z^{*}(t)=\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}
$$

- $Z(\beta, 0) Z^{*}(\beta, 0)=Z(\beta)^{2}\left(=L^{2}=e^{2 S}\right.$ for $\left.\beta=0\right)$
- Assume the levels are discrete (finite entropy) and non-degenerate (generic, implied by chaos)

Properties of $Z(t) Z^{*}(t)$

$$
Z(t) Z^{*}(t)=\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}
$$

- $Z(\beta, 0) Z^{*}(\beta, 0)=Z(\beta)^{2}\left(=L^{2}=e^{2 S}\right.$ for $\left.\beta=0\right)$
- Assume the levels are discrete (finite entropy) and non-degenerate (generic, implied by chaos)
- At long times, after a bit of time averaging (or J averaging in SYK), the oscillating phases go to zero and only the $n=m$ terms contribute.

Properties of $Z(t) Z^{*}(t)$

$$
Z(t) Z^{*}(t)=\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}
$$

- $Z(\beta, 0) Z^{*}(\beta, 0)=Z(\beta)^{2}\left(=L^{2}=e^{2 S}\right.$ for $\left.\beta=0\right)$
- Assume the levels are discrete (finite entropy) and non-degenerate (generic, implied by chaos)
- At long times, after a bit of time averaging (or J averaging in SYK), the oscillating phases go to zero and only the $n=m$ terms contribute.
- $Z(\beta)^{2} \rightarrow Z(2 \beta) .\left(=L=e^{S}\right.$ for $\left.\beta=0\right)$

Properties of $Z(t) Z^{*}(t)$

$$
Z(t) Z^{*}(t)=\sum_{m, n} e^{-\beta\left(E_{m}+E_{n}\right)} e^{i\left(E_{m}-E_{n}\right) t}
$$

- $Z(\beta, 0) Z^{*}(\beta, 0)=Z(\beta)^{2}\left(=L^{2}=e^{2 S}\right.$ for $\left.\beta=0\right)$
- Assume the levels are discrete (finite entropy) and non-degenerate (generic, implied by chaos)
- At long times, after a bit of time averaging (or J averaging in SYK), the oscillating phases go to zero and only the $n=m$ terms contribute.
- $Z(\beta)^{2} \rightarrow Z(2 \beta)$. ($=L=e^{S}$ for $\beta=0$)
- $e^{2 S} \rightarrow e^{S}$, an exponential change. How does this occur?

SYK as a toy model

- SYK can serve as a toy model to address these questions: [see Stanford's talk]

SYK as a toy model

- SYK can serve as a toy model to address these questions: [see Stanford's talk]
- has a sector dual to AdS_{2} dilaton gravity

SYK as a toy model

- SYK can serve as a toy model to address these questions: [see Stanford's talk]
- has a sector dual to AdS_{2} dilaton gravity
- Chaotic, discrete spectrum

SYK as a toy model

- SYK can serve as a toy model to address these questions: [see Stanford's talk]
- has a sector dual to AdS_{2} dilaton gravity
- Chaotic, discrete spectrum
- $G\left(t, t^{\prime}\right), \Sigma\left(t, t^{\prime}\right)$ description has aspects reminiscent of a bulk description:
- $O(N)$ singlets
- nonlocal
- Nonperturbatively well defined (two replicas)

$$
\left\langle Z(t) Z^{*}(t)\right\rangle=\int d G_{a b} d \Sigma_{a b} \exp \left(-N I\left(G_{a b}, \Sigma_{a b}\right)\right)
$$

SYK as a toy model

- SYK can serve as a toy model to address these questions: [see Stanford's talk]
- has a sector dual to AdS_{2} dilaton gravity
- Chaotic, discrete spectrum
- $G\left(t, t^{\prime}\right), \Sigma\left(t, t^{\prime}\right)$ description has aspects reminiscent of a bulk description:
- $O(N)$ singlets
- nonlocal
- Nonperturbatively well defined (two replicas)

$$
\left\langle Z(t) Z^{*}(t)\right\rangle=\int d G_{a b} d \Sigma_{a b} \exp \left(-N I\left(G_{a b}, \Sigma_{a b}\right)\right)
$$

- Finite dimensional Hilbert space, $D=L=2^{N / 2}$, amenable to numerics
- Guidance about what to look for

$Z Z^{*}(t)$ in SYK

[Jordan Cotler, Guy Gur-Ari, Masanori Hanada, Joe Polchinski, Phil Saad, Stephen Shenker, Douglas Stanford, Alex Streicher, Masaki Tezuka] ([CGHPSSSST])

See also
[Garcia-Garcia-Verbaarschot]

Meaning

Meaning

- Results
- The Slope \leftrightarrow Semiclassical quantum gravity

Meaning

- Results
- The Slope \leftrightarrow Semiclassical quantum gravity
- The Ramp and Plateau \leftrightarrow Random Matrix Theory

Meaning

- Results
- The Slope \leftrightarrow Semiclassical quantum gravity
- The Ramp and Plateau \leftrightarrow Random Matrix Theory
- The Dip \leftrightarrow crossover time

Slope, contd.

Slope is determined by semiclassical quantum gravity-nonuniversal

Slope, contd.

Slope is determined by semiclassical quantum gravity-nonuniversal In SYK slope $\sim 1 / t^{3}$. One loop exact Schwarzian result: $\rho(E) \sim e^{S_{0}}\left(E-E_{0}\right)^{1 / 2}$ ([Bagrets-Altland-Kamenev; CGBPSSSST; Stanford-Witten])

Slope, contd.

Slope is determined by semiclassical quantum gravity-nonuniversal

In SYK slope $\sim 1 / t^{3}$. One loop exact Schwarzian result: $\rho(E) \sim e^{S_{0}}\left(E-E_{0}\right)^{1 / 2}$ ([Bagrets-Altland-Kamenev; CGBPSSSST; Stanford-Witten])

In BTZ summing over modular transforms of blocks gives oscillating slope with power law envelope: nonperturbatively small oscillations in the density of states.
[Dyer-Gur-Ari]

The Ramp and Plateau

The Ramp and Plateau are signatures of Random Matrix Statistics, believed to be universal in quantum chaotic systems

The Ramp and Plateau

The Ramp and Plateau are signatures of Random Matrix Statistics, believed to be universal in quantum chaotic systems
$\left\langle Z Z^{*}(t)\right\rangle$ is essentially the Fourier transform of $\rho^{(2)}\left(E, E^{\prime}\right)$, the pair correlation function

The Ramp and Plateau

The Ramp and Plateau are signatures of Random Matrix Statistics, believed to be universal in quantum chaotic systems
$\left\langle Z Z^{*}(t)\right\rangle$ is essentially the Fourier transform of $\rho^{(2)}\left(E, E^{\prime}\right)$, the pair correlation function

$$
\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}
$$

[Dyson; Gaudin; Mehta]

The Ramp and Plateau

The Ramp and Plateau are signatures of Random Matrix Statistics, believed to be universal in quantum chaotic systems
$\left\langle Z Z^{*}(t)\right\rangle$ is essentially the Fourier transform of $\rho^{(2)}\left(E, E^{\prime}\right)$, the pair correlation function

$$
\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}
$$

[Dyson; Gaudin; Mehta]
The decrease before the plateau is due to anticorrelation of levels

The Ramp and Plateau

The Ramp and Plateau are signatures of Random Matrix Statistics, believed to be universal in quantum chaotic systems
$\left\langle Z Z^{*}(t)\right\rangle$ is essentially the Fourier transform of $\rho^{(2)}\left(E, E^{\prime}\right)$, the pair correlation function

$$
\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}
$$

[Dyson; Gaudin; Mehta]
The decrease before the plateau is due to anticorrelation of levels
Conjecture that this pattern is universal in quantum black holes

The Ramp and Plateau

The Ramp and Plateau are signatures of Random Matrix Statistics, believed to be universal in quantum chaotic systems
$\left\langle Z Z^{*}(t)\right\rangle$ is essentially the Fourier transform of $\rho^{(2)}\left(E, E^{\prime}\right)$, the pair correlation function

$$
\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}
$$

[Dyson; Gaudin; Mehta]
The decrease before the plateau is due to anticorrelation of levels

Conjecture that this pattern is universal in quantum black holes
Some evidence for this in melonic models
[Witten; Gurau; Carrozza-Tanasa;
Klebanov-Tarnopolsky; Krishnan-Kumar=Sanyal]

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$
- $t \ll t_{p}, \quad \rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{1}{L^{2}\left(E-E^{\prime}\right)^{2}}$, "spectral rigidity"

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$
- $t \ll t_{p}, \quad \rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{1}{L^{2}\left(E-E^{\prime}\right)^{2}}$, "spectral rigidity"
- $\frac{1}{L^{2}}$ perturbative in RMT, $\frac{1}{L^{2}} \sim e^{-c N}$, nonperturbative in $\frac{1}{N}$, SYK.

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$
- $t \ll t_{p}, \quad \rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{1}{L^{2}\left(E-E^{\prime}\right)^{2}}$, "spectral rigidity"
- $\frac{1}{L^{2}}$ perturbative in RMT, $\frac{1}{L^{2}} \sim e^{-c N}$, nonperturbative in $\frac{1}{N}$, SYK.
- $\sin ^{2}\left(L\left(E-E^{\prime}\right)\right) \rightarrow \exp \left(-2 L\left(E-E^{\prime}\right)\right)$, Altshuler-Andreev instanton

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$
- $t \ll t_{p}, \quad \rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{1}{L^{2}\left(E-E^{\prime}\right)^{2}}$, "spectral rigidity"
- $\frac{1}{L^{2}}$ perturbative in RMT, $\frac{1}{L^{2}} \sim e^{-c N}$, nonperturbative in $\frac{1}{N}$, SYK.
- $\sin ^{2}\left(L\left(E-E^{\prime}\right)\right) \rightarrow \exp \left(-2 L\left(E-E^{\prime}\right)\right)$, Altshuler-Andreev instanton
- $\sim \exp \left(-e^{c N}\right)$ in SYK (!)

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$
- $t \ll t_{p}, \quad \rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{1}{L^{2}\left(E-E^{\prime}\right)^{2}}$, "spectral rigidity"
- $\frac{1}{L^{2}}$ perturbative in RMT, $\frac{1}{L^{2}} \sim e^{-c N}$, nonperturbative in $\frac{1}{N}$, SYK.
- $\sin ^{2}\left(L\left(E-E^{\prime}\right)\right) \rightarrow \exp \left(-2 L\left(E-E^{\prime}\right)\right)$, Altshuler-Andreev instanton
- $\sim \exp \left(-e^{c N}\right)$ in SYK (!)
- How are these effects realized in the G, Σ formulation?

N versus L

- $\rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{\sin ^{2}\left(L\left(E-E^{\prime}\right)\right)}{\left(L\left(E-E^{\prime}\right)\right)^{2}}$
- $t \ll t_{p}, \quad \rho^{(2)}\left(E, E^{\prime}\right) \sim 1-\frac{1}{L^{2}\left(E-E^{\prime}\right)^{2}}$, "spectral rigidity"
- $\frac{1}{L^{2}}$ perturbative in RMT, $\frac{1}{L^{2}} \sim e^{-c N}$, nonperturbative in $\frac{1}{N}$, SYK.
- $\sin ^{2}\left(L\left(E-E^{\prime}\right)\right) \rightarrow \exp \left(-2 L\left(E-E^{\prime}\right)\right)$, Altshuler-Andreev instanton
- $\sim \exp \left(-e^{c N}\right)$ in SYK (!)
- How are these effects realized in the G, Σ formulation?
- $q=2$ SYK in progress [Saad, SS]

Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress]

At what time does the ramp begin?

Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress]

At what time does the ramp begin?
The dip is just a crossover: edge versus bulk dynamics

Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress]

At what time does the ramp begin?
The dip is just a crossover: edge versus bulk dynamics
The Thouless time [Garcia-Garcia-Verbaarschot]

Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress]

At what time does the ramp begin?
The dip is just a crossover: edge versus bulk dynamics
The Thouless time [Garcia-Garcia-Verbaarschot] Single particle hopping, n sites: diffusion time, $t_{t h} \sim n^{2}$

Onset of RMT behavior

[Gharibyan-Hanada-SS-Tezuka, in progress]

At what time does the ramp begin?
The dip is just a crossover: edge versus bulk dynamics
The Thouless time [Garcia-Garcia-Verbaarschot]
Single particle hopping, n sites: diffusion time, $t_{t h} \sim n^{2}$
Follow the ramp below the slope: use Gaussian filter [Stanford]

$$
Y(\alpha, t) Y^{*}(\alpha, t)=\sum_{m, n} e^{-\alpha\left(E_{n}^{2}+E_{m}^{2}\right)} e^{+i\left(E_{m}-E_{n}\right) t}
$$

Dip time $t_{d} \sim 200, N=34$

Dip time $t_{d} \sim 200, N=34$
 Onset of ramp $t_{r} \lesssim 10, N=34$

Dip time $t_{d} \sim 200, N=34$
Onset of ramp $t_{r} \lesssim 10, N=34$
(The ramp is an exponentially subleading effect in $Z Z^{*}$ and correlation functions before the dip)

Dip time $t_{d} \sim 200, N=34$
Onset of ramp $t_{r} \lesssim 10, N=34$
(The ramp is an exponentially subleading effect in $Z Z^{*}$ and correlation functions before the dip)

An upper bound. Very little variation in N for $N \leq 34$

Dip time $t_{d} \sim 200, N=34$
Onset of ramp $t_{r} \lesssim 10, N=34$
(The ramp is an exponentially subleading effect in $Z Z^{*}$ and correlation functions before the dip)

An upper bound. Very little variation in N for $N \leq 34$
$\log N$? scrambling?

Dip time $t_{d} \sim 200, N=34$
Onset of ramp $t_{r} \lesssim 10, N=34$
(The ramp is an exponentially subleading effect in $Z Z^{*}$ and correlation functions before the dip)

An upper bound. Very little variation in N for $N \leq 34$
$\log N$? scrambling?
Maybe; no.

Geometrically local qubits

n geometrically local qubits

Geometrically local qubits

n geometrically local qubits $H=\sum_{i} J_{i}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{i+1}^{\beta}$, J random

Geometrically local qubits

n geometrically local qubits $H=\sum_{i} J_{i}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{i+1}^{\beta}$, J random

Scrambling time $\sim n$

Geometrically local qubits

n geometrically local qubits $H=\sum_{i} J_{i}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{i+1}^{\beta}$, J random
Scrambling time $\sim n$
Gaussian density of states \rightarrow slope $\sim \exp \left(-N t^{2}\right)$, rapid decay

Geometrically local qubits

n geometrically local qubits $H=\sum_{i} J_{i}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{i+1}^{\beta}$, J random
Scrambling time $\sim n$
Gaussian density of states \rightarrow slope $\sim \exp \left(-N t^{2}\right)$, rapid decay
$t_{r} \sim n^{2}$? diffusion?

Geometrically local qubits

n geometrically local qubits
$H=\sum_{i} J_{i}^{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{i+1}^{\beta}$, J random
Scrambling time $\sim n$
Gaussian density of states \rightarrow slope $\sim \exp \left(-N t^{2}\right)$, rapid decay
$t_{r} \sim n^{2}$? diffusion?
Maybe not scrambling...

Brownian circuits

- Scrambling describes the growth of a simple operator [Roberts-Stanford-Susskind; Lieb-Robinson]

Brownian circuits

- Scrambling describes the growth of a simple operator [Roberts-Stanford-Susskind; Lieb-Robinson]
- Generic. Also happens in Brownian circuit

Brownian circuits

- Scrambling describes the growth of a simple operator [Roberts-Stanford-Susskind; Lieb-Robinson]
- Generic. Also happens in Brownian circuit
- $e^{-i H t} \rightarrow e^{-i H_{m} \Delta t} e^{-i H_{m-1} \Delta t} \ldots e^{-i H_{1} \Delta t}$

Brownian circuits

- Scrambling describes the growth of a simple operator [Roberts-Stanford-Susskind; Lieb-Robinson]
- Generic. Also happens in Brownian circuit
- $e^{-i H t} \rightarrow e^{-i H_{m} \Delta t} e^{-i H_{m-1} \Delta t} \ldots e^{-i H_{1} \Delta t}$
- H_{m} drawn from an ensemble

Brownian circuits

- Scrambling describes the growth of a simple operator [Roberts-Stanford-Susskind; Lieb-Robinson]
- Generic. Also happens in Brownian circuit
- $e^{-i H t} \rightarrow e^{-i H_{m} \Delta t} e^{-i H_{m-1} \Delta t} \ldots e^{-i H_{1} \Delta t}$
- H_{m} drawn from an ensemble
- Unitary gates $U=U_{m} U_{m-1} \ldots U_{1}$

Brownian circuits

- Scrambling describes the growth of a simple operator [Roberts-Stanford-Susskind; Lieb-Robinson]
- Generic. Also happens in Brownian circuit
- $e^{-i H t} \rightarrow e^{-i H_{m} \Delta t} e^{-i H_{m-1} \Delta t} \ldots e^{-i H_{1} \Delta t}$
- H_{m} drawn from an ensemble
- Unitary gates $U=U_{m} U_{m-1} \ldots U_{1}$
- Can analyze dynamics including scrambling analytically [Oliveira-Dahlsten-Plenio; Lashkari-Stanford-Hastings-Osborne-Hayden; Harrow-Low; ...]

Markov chain

- Study $U_{\rho} U^{\dagger}, \rho=\sum_{p} \gamma_{p} \sigma_{p}, \sigma_{p}$ a string of Paulis

Markov chain

- Study $U_{\rho} U^{\dagger}, \rho=\sum_{p} \gamma_{p} \sigma_{p}, \quad \sigma_{p}$ a string of Paulis
- (Need k copies for k design)

Markov chain

- Study $U_{\rho} U^{\dagger}, \rho=\sum_{p} \gamma_{p} \sigma_{p}, \sigma_{p}$ a string of Paulis
- (Need k copies for k design)
- Defines a Markov process on on Pauli strings e.g., I I I Z Z I I X I I...

Markov chain

- Study $U_{\rho} U^{\dagger}, \rho=\sum_{p} \gamma_{p} \sigma_{p}, \sigma_{p}$ a string of Paulis
- (Need k copies for k design)
- Defines a Markov process on on Pauli strings e.g., I I I Z Z I I X I I...
- Random two qubit gates: I I \rightarrow I I; AB $\rightarrow 15$ other possibilities, uniformly (for $k=2$) [Harrow-Low]

Markov chain

- Study $U_{\rho} U^{\dagger}, \rho=\sum_{p} \gamma_{p} \sigma_{p}, \sigma_{p}$ a string of Paulis
- (Need k copies for k design)
- Defines a Markov process on on Pauli strings e.g., I I I Z Z I I X I I...
- Random two qubit gates: I I \rightarrow I I; AB $\rightarrow 15$ other possibilities, uniformly (for $k=2$) [Harrow-Low]
- Initial condition for an OTOC: Z I I I I I I I I I I

Markov chain

- Study $U_{\rho} U^{\dagger}, \rho=\sum_{p} \gamma_{p} \sigma_{p}, \quad \sigma_{p}$ a string of Paulis
- (Need k copies for k design)
- Defines a Markov process on on Pauli strings e.g., I I I Z Z I I X I I...
- Random two qubit gates: I I \rightarrow I I; AB $\rightarrow 15$ other possibilities, uniformly (for $k=2$) [Harrow-Low]
- Initial condition for an OTOC: Z I I I I I I I I I I
- Time to randomize last qubit $\sim n$, scrambling time [Nahum-Vijay-Haah; Keyserlingk-Rakovszky-Pollmann-Sondhi]

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value
- For $k=2$ (two design) slowest terms are like $U_{a a} U_{a a}^{*} U_{a a} U_{a a}^{*}$ (no sum)

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value
- For $k=2$ (two design) slowest terms are like $U_{a a} U_{a a}^{*} U_{a a} U_{a a}^{*}$ (no sum)
- Study $U|a\rangle\langle a| U^{\dagger}$ where $|a\rangle=|0000\rangle$

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value
- For $k=2$ (two design) slowest terms are like $U_{a a} U_{a a}^{*} U_{a a} U_{a a}^{*}$ (no sum)
- Study $U|a\rangle\langle a| U^{\dagger}$ where $|a\rangle=|0000\rangle$
- $|0000\rangle\langle 0000|=\left(\frac{1}{2}\right)^{n}(\mathrm{I}+\mathrm{Z})^{n}$

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value
- For $k=2$ (two design) slowest terms are like $U_{a a} U_{a a}^{*} U_{a a} U_{a a}^{*}$ (no sum)
- Study $U|a\rangle\langle a| U^{\dagger}$ where $|a\rangle=|0000\rangle$
- $|0000\rangle\langle 0000|=\left(\frac{1}{2}\right)^{n}(\mathrm{I}+\mathrm{Z})^{n}$
- Z I Z Z I I Z Z I... Easy to equilibrate

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value
- For $k=2$ (two design) slowest terms are like $U_{a a} U_{a a}^{*} U_{a a} U_{a a}^{*}$ (no sum)
- Study $U|a\rangle\langle a| U^{\dagger}$ where $|a\rangle=|0000\rangle$
- $|0000\rangle\langle 0000|=\left(\frac{1}{2}\right)^{n}(\mathrm{I}+\mathrm{Z})^{n}$
- Z I Z Z I I Z Z I... Easy to equilibrate
- Equilibration time $\sim \log n$, shorter than scrambling !

Markov chain, contd.

- For spectral statistics study $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle, k=1,2 \ldots$
- RMT statistics $\left\langle\operatorname{tr}\left(U^{k}\right) \operatorname{tr}\left(\left(U^{\dagger}\right)^{k}\right)\right\rangle \rightarrow$ Haar average value
- For $k=2$ (two design) slowest terms are like $U_{a a} U_{a a}^{*} U_{a a} U_{a a}^{*}$ (no sum)
- Study $U|a\rangle\langle a| U^{\dagger}$ where $|a\rangle=|0000\rangle$
- $|0000\rangle\langle 0000|=\left(\frac{1}{2}\right)^{n}(\mathrm{I}+\mathrm{Z})^{n}$
- Z I Z Z I I Z Z I... Easy to equilibrate
- Equilibration time $\sim \log n$, shorter than scrambling !
- Correlation functions of very complicated operators [Roberts-Yoshida; Cotler-Hunter-Jones-Liu-Yoshida]

Evaporation and RMT

- For geometrically local Hamiltonian systems (in contrast to Brownian circuits) it looks like some kind of propagation (diffusion?) is occurring: $t \sim n^{p}$

Evaporation and RMT

- For geometrically local Hamiltonian systems (in contrast to Brownian circuits) it looks like some kind of propagation (diffusion?) is occurring: $t \sim n^{p}$
- For q-local systems like SYK $n^{p} \rightarrow \log n$ [Susskind]

Evaporation and RMT

- For geometrically local Hamiltonian systems (in contrast to Brownian circuits) it looks like some kind of propagation (diffusion?) is occurring: $t \sim n^{p}$
- For q-local systems like SYK $n^{p} \rightarrow \log n$ [Susskind]
- A plausible guess

Evaporation and RMT

- For geometrically local Hamiltonian systems (in contrast to Brownian circuits) it looks like some kind of propagation (diffusion?) is occurring: $t \sim n^{p}$
- For q-local systems like SYK $n^{p} \rightarrow \log n$ [Susskind]
- A plausible guess
- Important because the black hole evaporation time is $\sim S \sim n$.

Evaporation and RMT

- For geometrically local Hamiltonian systems (in contrast to Brownian circuits) it looks like some kind of propagation (diffusion?) is occurring: $t \sim n^{p}$
- For q-local systems like SYK $n^{p} \rightarrow \log n$ [Susskind]
- A plausible guess
- Important because the black hole evaporation time is $\sim S \sim n$.
- So these phenomena would appear in small black holes as well, although as an exponentially subleading effect

Evaporation and RMT

- For geometrically local Hamiltonian systems (in contrast to Brownian circuits) it looks like some kind of propagation (diffusion?) is occurring: $t \sim n^{p}$
- For q-local systems like SYK $n^{p} \rightarrow \log n$ [Susskind]
- A plausible guess
- Important because the black hole evaporation time is $\sim S \sim n$.
- So these phenomena would appear in small black holes as well, although as an exponentially subleading effect
- We need to know what they mean in quantum gravity!

