

Strings2017 @Tel Aviv, June26-30, 2017

AdS From Optimization of Path-Integrals in CFTs

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics (YITP), Kyoto Univ.

Based on 1703.00456, 1706.07056 (also 1609.04645)

Collaborators: Pawel Caputa (YITP) Nilay Kundu (YITP) Masamichi Miyaji (YITP) Kento Watanabe (YITP)

Motivation 1

What is the basic mechanism of AdS/CFT ?

[After 20 years from Maldacena's discovery]

⇒ One intriguing idea is the conjectured interpretation of AdS/CFT as tensor networks (TNs).
[Swingle 2009,...]

``Emergent space from Quantum Entanglement''

Tensor network = Network of Quantum entanglement

=``Geometry'' of Wave-functional in QFTs

Spacetime in gravity = Collections of bits of entanglement

⇒ Emergent space via tensor network ?

MERA [Vidal 05, ...] [TN for AdS/CFT: Swingle 09,...]

A Basic Key Idea: Tensor Network of MERA = a time slice of AdS space

Questions [see e.g. Beny 2011, Bao et.al. 2015, Czech et.al. 2015]

(a) Special Conformal invariance ?

- (b) Non–isotropic tensor $\rightarrow \exists$ causal structure in MERA ?
- (c) Why the EE bound is saturated ?
- (d) How to derive Einstein eq. ? (Sub AdS Scale Locality)

Recent developments in lattice models

Improved TN models:

⇒(a),(b),(c) [Perfect TN: Pastawski-Yoshida-Harlow-Preskill 15] [Random TN: Hayden-Nezami-Qi-Thomas-Walter-Yang 16]

•Another Interpretation :

⇒(a),(b) [Kinematic Space: Czech, Lamprou, McCandlish, Sully 15]

Some of these problems may be due to lattice artifacts.

Moreover, we want to eventually understand the genuine AdS/CFT in the continuum limit.

We propose a new alternative approach **based on path-integrals**, related to a continuum limit of TNs.

Our guiding principle 1

Eliminating unnecessary tensors in TN for a given state

- = Creating the most efficient TN (= Optimization of TN)
 - Solving the dynamics of Gravity (Einstein eq. etc.)

How can we define **complexity** in CFTs ?

Computational Complexity of a quantum state = Min [# of Quantum Gates] = Min [# of Tensors] in TN

Recently, holographic formulas of complexity have been proposed. [Refer to Brown's ,Myers's talk]

(i) Complexity = Max. volume in AdS [Stanford-Susskind 14]
(ii) Complexity= Gravity action in WDW patch of AdS
[Brown-Roberts-Susskind-Swingle-Zhao 15, Lehner-Myers et.al. 16]
For CFTs, Complexity ~ Info.Metric [Miyaji-Numasawa-Shiba -Watanabe-TT 15]

Lattice structure (= arrangement of tensors) in TN
 Background metric gab in Euclid path-integral

- Optimization of TN for a state Ψ

 $\longleftrightarrow \text{ Minimizing Path-integral Complexity } I_{\Psi}[g_{ab}]$ w.r.t the metric g_{ab}

<u>Contents</u>

- 1 Motivations
- 2 AdS from Optimization of Path-Integrals
- ③ Entanglement Wedge and Entropy
- ④ NAdS2/CFT1 (SYK model)
- **5** Higher Dim. CFTs
- 6 Conclusions

2 AdS from Optimization of Path-Integrals(2-1) Formulation

<u>**A Basic Rule:**</u> Simplify a path-integral s.t. it produces the correct UV wave functional.

Consider 2D CFTs for simplicity. (z=-Euclidean time, x=space)

Deformation of discretizations in path-integral = Curved metric such that one cell (bit) = unit length.

$$ds^{2} = e^{2\phi(x,z)}(dx^{2} + dz^{2}).$$

Note: The original flat metric is given by (ϵ is UV cutoff):

$$ds^2 = \varepsilon^{-2} \cdot (dx^2 + dz^2).$$

Optimization of Path-Integral [Miyaji-Watanabe-TT 16]

The wave functional for CFT vacuum is given by

$$g_{ab}(x,z)$$
: background metric
 $\Psi_{UV}^{g} [\Phi(x)] = \int \prod_{\substack{0 < z < \infty \\ -\infty < x < \infty}} D\Phi(x,z) e^{-S_{CFT}(\Phi)} \cdot \delta(\Phi(x) - \Phi(x,z=0))$

In CFTs, owing to the Weyl invariance, we have

$$\Psi_{UV}^{g_{ab}=e^{2\phi}\delta_{ab}}\left[\Phi(x)\right] = \exp\left(I[\phi(x,z)]\right) \cdot \Psi_{UV}^{\text{Flat}}\left[\Phi(x)\right]$$

Optimized wf.

Original wf.

<u>**Our Proposal**</u> (Optimization of Path-integral for CFTs): Minimize $I[\phi(x,z)]$ w.r.t $\phi(x,z)$ with the boundary condition $e^{2\phi}|_{z=\varepsilon} = \varepsilon^{-2}$.

A Reason for Minimization

The normalization N estimates repetitions of same operations of path-integration. → Minimize this !

⇒ Our Complexity Formula:

$$C_{\Psi} = \underset{\phi(x,z)}{\text{Min}} [I_{\Psi}[\phi(x,z)]]$$

 $C_{\Psi} \equiv \text{computational complexity of}$ the quantum state $|\Psi\rangle$

(2-2) Liouville Action as Complexity in 2D CFTs [Caputa-Kundu-Miyaji-Watanabe-TT 17] $S_{L}[\phi] = \frac{c}{24\pi} \int dx dz \left[(\partial_{x} \phi)^{2} + (\partial_{z} \phi)^{2} + e^{2\phi} \right]^{2}$

A Sketch: Optimization of Path-Integral

(2-3) Thermofield Double of 2D CFT

The TFD state at T=1/ β is described as the path-integral

$$\Psi_{g}[\Phi_{1}(x),\Phi_{2}(x)]$$

$$=\int_{\substack{-\beta/4

$$Minimization of S_{L}[\phi(x,z)]$$

$$\Rightarrow e^{2\phi(z)} = \frac{4\pi^{2}}{\beta^{2}}\cdot\frac{1}{\cos^{2}(2\pi z/\beta)}.$$

$$= \text{Time slice of BTZ black hole.}$$
(i.e. Einstein-Rosen Bridge).$$

(2-4) Primary States and Back-reactions

Vacuum state on a circle

We optimize the path-integral on a disk with the unit radius.

The solution of Liouville equation

 $ds^2 = \frac{4dwd\overline{w}}{\left(1 - |w|^2\right)^2}.$

= Hyperbolic Disk (=Time slice of Global AdS3)

w|=1

Primary state on a circle

We insert an operator $O(w, \overline{w})$ at w=0. It has conformal dim. hL=hR=h.

$$\Rightarrow O(x) \sim e^{-2h \cdot \phi}.$$

Thus we minimize $\Psi_{g=e^{2\phi}} / \Psi_{g=1} \propto e^{S_L[\phi]} \cdot e^{-2h\phi(0)}$.

$$\partial_{w}\partial_{\overline{w}}\phi\frac{1}{4}e^{2\phi} + \frac{6\pi h}{c}\delta^{2}(w) = 0.$$

Solution:
$$ds^2 = \frac{4d\zeta d\zeta}{(1-|\zeta|^2)^2}, \quad \zeta \equiv w^a = re^{i\theta}$$

⇒ Deficit angle: $\theta \sim \theta + 2\pi a$. $(a \equiv 1 - 12h/c)$.

Note: the AdS/CFT predicts $a = \sqrt{1 - 24h/c}$. Interestingly, if we consider the quantum Liouville CFT, then $h = \frac{\gamma \alpha}{4} (Q - \alpha \gamma / 2.), \quad c = 1 + 3Q^2, \quad (Q \equiv 2/\gamma + \gamma).$ \Rightarrow We get $a = \sqrt{1 - 24h/c}$.

Heuristic Summary

This provides the back-reaction mechanism as in general relativity !

③ Entanglement Wedge and Entropy (3-1) Entanglement Wedge from Optimization

Consider an optimization of reduced density matrix P_A . We decompose the geometry into two halves. A=an interval

(3-2) Hol. Ent. Entropy from Optimization

④ NAdS2/CFT1 (SYK model)

At first sight, one may be confused as the action

$$ds_{1d}^2 = e^{2\phi} dz^2$$
, $S_{1d} = \mu \int dz \, e^{\phi} \sim O(\varepsilon^{-1})$.

gets trivial when minimized.

⇒We need to add the conformal sym. breaking effect ! [Sachdev-Ye-Kitaev model, Polchinski-Rosenhaus 16, Maldacena-Stanford 16]

$$\Psi_{\phi} = e^{cS_{1d}} \cdot \Psi_{\phi=0}, \qquad S_{1d} = \int dz [(\partial_z \phi)^2 + \mu e^{\phi}].$$

$$\implies ds_{1d}^2 = \frac{dz^2}{z^2}. \qquad \text{Schwarz Derivative term}$$

(5) Higher Dimensional CFTs

For simplicity, we focus on the optimization of Weyl rescaling mode: $ds^2 = e^{2\phi(x,z)} \left(dz^2 + d\vec{x}^2 \right)$

We argue that the complexity functional is given by

$$I_{d}[\phi] = N \int dz dx^{d-1} \left[e^{d\phi} + e^{(d-2)\phi} (\partial_{z}\phi)^{2} + e^{(d-2)\phi} (\partial_{x}\phi)^{2} + \frac{e^{(d-2)\phi} \cdot R_{0}}{(d-1)(d-2)} \right] + 2N \int_{bdy} dx^{d-1} \left[\frac{e^{(d-2)\phi} \cdot K_{0}}{(d-1)(d-2)} + \frac{\mu_{B}}{d-1} e^{(d-1)\phi} \right] \cdot \left(N \equiv \frac{(d-1)R_{AdS}^{d-1}}{16\pi G_{N}} \right) \cdot \left(N \equiv \frac{(d-1)R_{AdS}^{d-$$

Note:
$$\lim_{d \to 2} [I_d[\phi] - I_d[0]] = S_L[\phi] - S_L[0]$$

Properties

- Time slices of pure AdSd+1 are reproduced for CFT vacua.
- When A= a round ball, EW and HEE are reproduced.
- The first order mass deformation (=AdS BH deformation) of the metric is correctly reproduced.
 [cf. AdS3/CFT2, ∃h/c corrections.]

Evaluations of Path-integral Complexity in various dim.

2d CFT (1) Poincare AdS3: $C = \frac{c}{12\pi} \cdot \frac{L}{\varepsilon}$.

(2) global AdS3:
$$C = \frac{c}{6} \cdot \left[\frac{1}{\varepsilon} - 1\right].$$

(3) BTZ(TFD): $C = \frac{c}{3} \left[\frac{1}{\varepsilon} - \frac{\pi^2}{2\beta}\right].$

3d CFT global AdS4:
$$C = 4\pi N \left[\frac{1}{\varepsilon^2} + \frac{1}{2} + \log \left(\frac{2}{\varepsilon} \right) \right].$$

4d CFT global AdS5: $C = 2\pi^2 N \left[\frac{2}{3\varepsilon^3} + \frac{1}{\varepsilon} - \frac{5}{12} \right].$

C ~ Volume law divergence + subleading terms. [Holographic complexity: Carmi-Myers-Rath 16, Reynolds-Ross 16]

A Connection to ``Complexity = Action'' proposal

Consider a Pure AdSd+1 and Pick up the following patch:

WDW

patch

t = 0

$$ds^{2} = R_{AdS}^{2} \left(-dt^{2} + \cos^{2} t \cdot e^{2\phi(x)} \cdot h_{ab} dx^{a} dx^{b} \right).$$

This agrees with Wheeler-DeWitt patch in [Brown-Roberts-Susskind-Swingle-Zhao 15] if $e^{2\phi(x)}h_{ab}dx^a dx^b$ is given by Hd. In this setup, we can show $I_{WDW} = \frac{1}{16\pi G_{M}} \int_{WDW} dt \sqrt{-g} [R - 2\Lambda] + (bdy. term)$ = $(d-2) \cdot n_d \cdot I_d[\phi]$ + (IR surface term). **1** Our complexity $\left(n_d \equiv \frac{\sqrt{\pi}\Gamma((d-1)/2)}{\Gamma(d/2)}\right)$

- We introduced ``path-integral complexity" of a given state, which measures complexity of the corresponding TN.
- In 2D CFT, it is given by the Liouville action, which is supported by the Weyl anomaly and the TNR complexity.
 An optimization of path-integral of a CFT state
 - = Minimizing the complexity
 - ⇔ a time slice of its gravity dual in AdS/CFT
- We gave generalizations to higher dim. and CFT1.

Future Problems

Time dependent b.g. (gtt: covariant formulation) ? Sub AdS locality ?, dS/CFT version ?,

Thank you very much !

Post-strings2018 Long Term Workshop: ``New Frontiers in String Theory" July 2- August 3, 2018 @ YITP, Kyoto U.

Preliminary web page:

http://www2.yukawa.kyoto-u.ac.jp/~nfst2018/

Organizers

Yasuaki Hikida (YITP) Shinji Hirano (Witwatersrand) Kazuo Hosomichi (NDA) Hiroshi Kunitomo (YITP) Masaki Shigemori (Queen Mary) Shigeki Sugimoto (Chair, YITP) Tadashi Takayanagi (YITP) Seiji Terashima (YITP)

Schedule & Venue

YITP long-term workshop "New Frontiers in String Theory"

- Start: July 2, 2018, Close: August 3, 2018
- Panasonic Auditorium, Yukawa Hall, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan

Invited Speakers