Microstate Geometries

Deep Inside the Black-Hole Regime

Research supported supported in part by DOE grant DE- SC0011687

<u>Outline</u>

- Microstate Geometries D1-D5-P Holography
- Some families of D1-D5-P states
- Building the holographic duals:

Microstate geometries with AdS₂/BTZ throats

- The MSW string
- Holographic duals of some MSW states

Based on Collaborations with:

I. Bena, S. Giusto, E. Martinec, R. Russo, M. Shigemori, D. Turton. arXiv:1607.03908, arXiv:1703.10171, arXiv:1708.XXXXX

Microstate Geometry = Smooth, horizonless solutions to the bosonic sector of **supergravity** with the same asymptotic structure as a given black hole/ring

Singularity resolved; Horizon removed

Microstate Geometry = Smooth, horizonless solutions to the bosonic sector of **supergravity** with the same asymptotic structure as a given black hole/ring

Supergravity because we seek stringy resolutions at the horizon scale

► Very long-range effects ⇒ Massless limit of strings ...

Microstate Geometry \equiv Smooth, horizonless solutions to the bosonic sector of supergravity with the same asymptotic structure as a given black hole/ring

Supergravity because we seek stringy resolutions at the horizon scale

► Very long-range effects ⇒ Massless limit of strings ...

What is the form of generic, BPS, time-independent horizonless, smooth solutions in supergravity?

Microstate Geometry \equiv Smooth, horizonless solutions to the bosonic sector of supergravity with the same asymptotic structure as a given black hole/ring

Supergravity because we seek stringy resolutions at the horizon scale

► Very long-range effects ⇒ Massless limit of strings ...

What is the form of generic, BPS, time-independent horizonless, smooth solutions in supergravity?

What CFT states do they describe?

Primary Motivation for Microstate Geometries

Resolving the black-hole information problem seems to require microstate structure to be encoded and supported at the horizon scale

Microstate Geometries

- The only (known) mechanism that can support structure at the horizon scale
 - Supergravity captures the universal, macroscopic features of microstate structure
 - Semi-classical analysis: **To what extent can supergravity** encode microstate structure?

Black-Hole Microstates and CFT's

Black-Hole Microstates and CFT's

• **<u>D1-D5 CFT</u>**: A (4,4) supersymmetric CFT with $c = 6 N_1 N_5$

4 BPS states = (R,R)-ground states

¹/₈ BPS states = (any left-moving state, R ground state) NP

Strominger-Vafa state counting for BPS black hole in five dimensions: $S = 2 = \sqrt{N N}$

 $S = 2\pi \sqrt{N_1 N_5 N_P}$

Black-Hole Microstates and CFT's

• **<u>D1-D5 CFT</u>**: A (4,4) supersymmetric CFT with $c = 6 N_1 N_5$

4 BPS states = (R,R)-ground states

¹/₈ BPS states = (any left-moving state, R ground state) NP

Strominger-Vafa state counting for BPS black hole in five dimensions: $S = 2 \pi \sqrt{N_1 N_5 N_P}$

• <u>MSW String</u>: A (0,4) supersymmetric CFT (Maldacena-Strominger-Witten) M5 brane wrapping a divisor in a CY₃. Dual class, $P \in H^2(CY_3, \mathbb{Z})$

MSW string CFT lives on remaining (1+1) dimensions of M5 brane

Central charge **c** = 6 **D**,
$$D = \frac{1}{6} \int_{CY_3} P^3$$

State counting for BPS black hole in four dimensions: S =

$$S = 2\pi \sqrt{DN_P}$$

One Focus of the Microstate Geometry Program

Describe the strongly coupled gravity duals of these CFT states.

To what extent can these CFT states be captured in supergravity?

 \Rightarrow Universal gravity dual of both D1-D5 and MSW.

Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^N/S_N$

⇒ CFT on common <u>D1-D5</u> direction, $(t,y) \Leftrightarrow (u,v)$ (4,4) supersymmetric CFT with c = 6 N₁ N₅

Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^N/S_N$

⇒ CFT on common <u>D1-D5</u> direction, $(t,y) \Leftrightarrow (u,v)$ (4,4) supersymmetric CFT with c = 6 N₁ N₅ $y = y+2\pi R$

Maximally spinning (1/4 BPS) RR-ground state:

Since N = N₁N₅ copies

Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^N/S_N$

⇒ CFT on common <u>D1-D5</u> direction, $(t,y) \Leftrightarrow (u,v)$ (4,4) supersymmetric CFT with c = 6 N₁ N₅ $y = y+2\pi R$

Maximally spinning (1/4 BPS) RR-ground state:

TOpen D1-D5 superstrings moving in T4
with N = N1 N5 Chan-Paton labels: (T4)N/SN⇒CFT on common D1-D5 direction, (t,y) ⇔ (u,v)
(4,4) supersymmetric CFT with c = 6 N1 N5
y = y+2πRMaximally spinning (¼ BPS) RR-ground state:(+,+)
space-time angular momenta

 $D_{D_{1}} = N_{1}N_{5}$ (+,+) $(j_{L}, j_{R}) = \frac{1}{2}(N, N)$ (+,+) (+,+) (+,+)

<u>Holographic dual</u>: Maximally spinning supertube in $R^{4,1}$ Supertube profile spins out into $M^{4,1}$ space-time

 $(g_1(v), g_2(v), g_3(v), g_4(v)) \in \mathbb{R}^4$ $g_1(v) + ig_2(v) = a e^{2\pi i v/R}$ $g_3(v) = g_4(v) = 0$

Open D1-D5 superstrings moving in T^4 with $N = N_1 N_5$ Chan-Paton labels: $(T^4)^N/S_N$

⇒ CFT on common <u>D1-D5</u> direction, $(t,y) \Leftrightarrow (u,v)$ (4,4) supersymmetric CFT with c = 6 N₁ N₅ $v = v+2\pi R$

Maximally spinning (1/4 BPS) RR-ground state:

(+,+) (+,+) (+,+) $(j_{L}, j_{R}) = \frac{1}{2}(N, N)$ $(j_{L}, j_{R}) = \frac{1}{2}(N, N)$

<u>Holographic dual</u>: Maximally spinning supertube in $\mathbb{R}^{4,1}$ Supertube profile spins out into $\mathbb{M}^{4,1}$ space-time $Q_1 Q_5 = \mathbb{R}^2 \mathbf{a}^2$

More general <u>14</u> BPS profiles

Orbifold CFT: k twisted sector

More general 1/4 BPS profiles

Orbifold CFT: k twisted sector

Act with fermion zero modes

Generic ¹/₈ BPS state: Add general left-moving excitations

Momentum charge, QP = Lo, left $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Generic ¹/₈ BPS state: Add general left-moving excitations

Momentum charge, QP = Lo, left $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left(\frac{1}{m!\,n!}\,(J_{-1}^{+})^{m}\,(L_{-1}-J_{-1}^{3})^{n}|00\rangle_{k}\right)^{N_{k,m,n}}$$
$$N_{0} + \mathbf{k}N_{k,m,n} = N \equiv N_{1}N_{5}$$

Generic ¹/₈ BPS state: Add general left-moving excitations

Momentum charge, QP = Lo, left $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Very special families of momentum excitations: "Supergraviton gas"

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left(\frac{1}{m!\,n!}\,(J_{-1}^{+})^{m}\,(L_{-1}-J_{-1}^{3})^{n}|00\rangle_{k}\right)^{N_{k,m,n}}$$
$$N_{0} + \mathbf{k}N_{k,m,n} = N \equiv N_{1}N_{5}$$

Quantum numbers

Define
$$\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$$

 $j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a^2} + \frac{m}{k} \mathbf{b^2} \right), \qquad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a^2}, \qquad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b^2}$
 $Q_1 Q_5 = R^2 \left(\mathbf{a^2} + \mathbf{b^2} \right)$

Generic ¹/₈ BPS state: Add general left-moving excitations

Momentum charge, QP = Lo, left $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left(\frac{1}{m!n!} (J_{-1}^{+})^{m} (L_{-1} - J_{-1}^{3})^{n} |00\rangle_{k}\right)^{N_{k,m,n}}$$
Quantum numbers
Define $\mathcal{N} = \frac{N_{1}N_{5}}{a^{2} + b^{2}}$
 $j_{L} = \frac{1}{2}\mathcal{N}\left(a^{2} + \frac{m}{k}b^{2}\right), \quad \tilde{j}_{R} = \frac{1}{2}\mathcal{N}a^{2}, \quad N_{P} = \frac{1}{2}\mathcal{N}\frac{m+n}{k}b^{2}$
 $Q_{1}Q_{5} = R^{2}(a^{2} + b^{2})$

Generic ¹/₈ BPS state: Add general left-moving excitations

Momentum charge, QP = Lo, left $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left(\frac{1}{m!n!} (J_{-1}^{+})^{m} (L_{-1} - J_{-1}^{3})^{n} |00\rangle_{k}\right)^{N_{k,m,n}}$$
Quantum numbers
Define $\mathcal{N} = \frac{N_{1}N_{5}}{a^{2} + b^{2}}$
 $j_{L} = \frac{1}{2}\mathcal{N}\left(a^{2} + \frac{m}{k}b^{2}\right), \quad \tilde{j}_{R} = \frac{1}{2}\mathcal{N}a^{2}, \quad N_{P} = \frac{1}{2}\mathcal{N}\frac{m+n}{k}b^{2}$
 $Q_{1}Q_{5} = R^{2}(a^{2} + b^{2})$

Generic ¹/₈ BPS state: Add general left-moving excitations

Momentum charge, QP = L0, left $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left(\frac{1}{m!n!} (J_{-1}^{+})^{m} (L_{-1} - J_{-1}^{3})^{n} |00\rangle_{k}\right)^{N_{k,m,n}}$$
Quantum numbers
$$Define \ \mathcal{N} = \frac{N_{1}N_{5}}{a^{2} + b^{2}}$$

$$j_{L} = \frac{1}{2} \mathcal{N} \left(a^{2}_{+} + \frac{m}{k}b^{2}\right), \quad \tilde{j}_{R} = \frac{1}{2} \mathcal{N} a^{2}, \qquad N_{P} = \frac{1}{2} \mathcal{N} \frac{m+n}{k}b^{2}$$

$$D1-D5 \ l+\frac{1}{2}, +\frac{1}{2} i esidue \qquad Q_{1} Q_{5} = R^{2} (a^{2} + b^{2})$$

Generic ¹/₈ BPS state: Add general left-moving excitations

Momentum charge, QP = L0, left $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Very special families of momentum excitations: "Supergraviton gas"

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left(\frac{1}{m!\,n!}\,(J_{-1}^{+})^{m}\,(L_{-1}-J_{-1}^{3})^{n}|00\rangle_{k}\right)^{N_{k,m,n}}$$
Quantum numbers
$$Define \ \mathcal{N} = \frac{N_{1}N_{5}}{a^{2}+b^{2}}$$

$$j_{L} = \frac{1}{2}\mathcal{N}\left(a^{2}_{+}+\frac{m}{k}b^{2}\right), \quad \tilde{j}_{R} = \frac{1}{2}\mathcal{N}a^{2}, \qquad N_{P} = \frac{1}{2}\mathcal{N}\frac{m+n}{k}b^{2}$$

$$D1-D5 \ l+\frac{1}{2},+\frac{1}{2}\ residue$$

$$Q_{1}Q_{5} = R^{2}(a^{2}+b^{2})$$

Special forms:

Adding pure momentum: m = 0.

Vanishing angular momentum: $m = 0, a \rightarrow 0$.

We know the supergravity duals of arbitrary superpositions of states of the form:

$$\left(\left|+\frac{1}{2},+\frac{1}{2}\rangle_{1}\right)^{N_{0}}\otimes\left[\bigotimes_{k_{i},m_{i},n_{i}}\left(\frac{1}{m_{i}!n_{i}!}\left(J_{-1}^{+}\right)^{m_{i}}\left(L_{-1}-J_{-1}^{3}\right)^{n_{i}}|00\rangle_{k_{i}}\right)^{N_{k_{i},m_{i},n_{i}}}\right]$$

We know the supergravity duals of arbitrary superpositions of states of the form:

$$\left(|+\frac{1}{2},+\frac{1}{2}\rangle_{1}\right)^{N_{0}} \otimes \left[\bigotimes_{k_{i},m_{i},n_{i}} \left(\frac{1}{m_{i}!\,n_{i}!}\,(J_{-1}^{+})^{m_{i}}\,(L_{-1}-J_{-1}^{3})^{n_{i}}|00\rangle_{k_{i}}\right)^{N_{k_{i},m_{i},n_{i}}}\right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

$$g_1(v) + ig_2(v) = \mathbf{a} e^{2\pi i v/R}$$
 " $g_5(v)$ " = $\mathbf{b} \sin(2\pi \mathbf{k} v/R)$

We know the supergravity duals of arbitrary superpositions of states of the form:

$$\left(|+\frac{1}{2},+\frac{1}{2}\rangle_{1}\right)^{N_{0}} \otimes \left[\bigotimes_{k_{i},m_{i},n_{i}} \left(\frac{1}{m_{i}!\,n_{i}!}\,(J_{-1}^{+})^{m_{i}}\,(L_{-1}-J_{-1}^{3})^{n_{i}}|00\rangle_{k_{i}}\right)^{N_{k_{i},m_{i},n_{i}}}\right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

$$g_1(v) + ig_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R}$$
 " $g_5(v)$ " = $\mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$

to give:
$$j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a^2} + \frac{m}{k} \mathbf{b^2} \right), \qquad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a^2}, \qquad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b^2}$$

We know the supergravity duals of arbitrary superpositions of states of the form:

$$\left(|+\frac{1}{2},+\frac{1}{2}\rangle_{1}\right)^{N_{0}} \otimes \left[\bigotimes_{k_{i},m_{i},n_{i}} \left(\frac{1}{m_{i}!\,n_{i}!}\,(J_{-1}^{+})^{m_{i}}\,(L_{-1}-J_{-1}^{3})^{n_{i}}|00\rangle_{k_{i}}\right)^{N_{k_{i},m_{i},n_{i}}}\right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

$$g_1(v) + ig_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R}$$
 " $g_5(v)$ " = $\mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$

to give: $j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a^2} + \frac{m}{k} \mathbf{b^2} \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a^2}, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b^2}$

Three mode numbers, (k,m,n) \Rightarrow Supergravity duals depend on: $\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$

We know the supergravity duals of arbitrary superpositions of states of the form:

$$\left(\left|+\frac{1}{2},+\frac{1}{2}\rangle_{1}\right)^{N_{0}}\otimes\left[\bigotimes_{k_{i},m_{i},n_{i}}\left(\frac{1}{m_{i}!n_{i}!}\left(J_{-1}^{+}\right)^{m_{i}}\left(L_{-1}-J_{-1}^{3}\right)^{n_{i}}\left|00\rangle_{k_{i}}\right)^{N_{k_{i},m_{i},n_{i}}}\right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

AdS₃ (u,
$$\mathbf{v}$$
,r) $S^3(\theta, \psi, \phi)$

$$g_1(v) + ig_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R}$$
 " $g_5(v)$ " = $\mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$

to give: j_I

$$L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right), \qquad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2, \qquad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$$

Three mode numbers, (k,m,n) \Rightarrow Supergravity duals depend on: $\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$

k-mode: $(\psi - \phi) \iff j_L = j_R$ responsible for

$$j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a^2}$$

We know the supergravity duals of arbitrary superpositions of states of the form:

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_1)^{N_0} \otimes \left[\bigotimes_{k_i,m_i,n_i} \left(\frac{1}{m_i!n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} |00\rangle_{k_i}\right)^{N_{k_i,m_i,n_i}}\right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

$$g_1(v) + ig_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R}$$
 " $g_5(v)$ " = $\mathbf{b} \sin(2\pi \mathbf{k} \, \mathbf{v}/R)$

to give: j_L

$$= \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right), \qquad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2, \qquad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$$

Three mode numbers, (k,m,n) \Rightarrow Supergravity duals depend on: $\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$

k-mode: $(\psi - \phi) \iff j_L = j_R$ responsible for $j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2$ m-mode $(\mathbf{v} - \psi) \iff j_L, N_P$ responsible for $\tilde{j}_R = \frac{1}{2} \mathcal{N} \frac{\mathbf{m}}{\mathbf{k}} \mathbf{b}^2$ N

$$\widetilde{j}_R = \frac{1}{2} \mathcal{N} \frac{\mathbf{m}}{\mathbf{k}} \mathbf{b^2}$$
 $N_P = \frac{1}{2} \mathcal{N} \frac{\mathbf{m}}{\mathbf{k}} \mathbf{b^2}$

We know the supergravity duals of arbitrary superpositions of states of the form:

$$\left(|+\frac{1}{2},+\frac{1}{2}\rangle_{1}\right)^{N_{0}} \otimes \left[\bigotimes_{k_{i},m_{i},n_{i}} \left(\frac{1}{m_{i}!n_{i}!} \left(J_{-1}^{+}\right)^{m_{i}} \left(L_{-1}-J_{-1}^{3}\right)^{n_{i}} |00\rangle_{k_{i}}\right)^{N_{k_{i},m_{i},n_{i}}}\right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:

$$g_1(v) + ig_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R}$$
 " $g_5(v)$ " = $\mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$

to give: j_1

$$L = \frac{1}{2} \mathcal{N} \left(\mathbf{a^2} + \frac{m}{k} \mathbf{b^2} \right), \qquad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a^2}, \qquad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b^2}$$

 $N_P = \frac{1}{2} \mathcal{N} \frac{\mathbf{n}}{\mathbf{h}} \mathbf{b^2}$

AdS₃ (u, \mathbf{v} ,r) S³ (θ , ψ , ϕ)

Three mode numbers, $(k,m,n) \Rightarrow$ Supergravity duals depend on: $\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$

k-mode: $(\psi - \phi) \iff j_L = j_R$ responsible for $j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} a^2$ $ilde{j}_R \; = \; rac{1}{2} \, \mathcal{N} \, rac{{f m}}{{f k}} \, {f b}^{f 2} \qquad N_P \; = \; rac{1}{2} \, \mathcal{N} \, rac{{f m}}{{f k}} \, {f b}^{f 2}$ m-mode $(v-\psi) \leftrightarrow j_L, N_P$ responsible for n-mode (v) $\leftrightarrow N_P$ responsible for

Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T⁴: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

(Gutowski, Martelli and Reall)

 $ds_{6}^{2} = -\frac{2}{\sqrt{\mathcal{P}}} \left(dv + \beta \right) \left(du + \omega - \frac{1}{2} Z_{3} \left(dv + \beta \right) \right) + \sqrt{\mathcal{P}} V^{-1} \left(d\psi + A \right)^{2} + \sqrt{\mathcal{P}} V \, d\vec{y} \cdot d\vec{y}$

Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T⁴: Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

(Gutowski, Martelli and Reall)

$$ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} \frac{(dv+\beta)(du+\omega-\frac{1}{2}Z_3(dv+\beta))}{(du+\omega-\frac{1}{2}Z_3(dv+\beta))} + \sqrt{\mathcal{P}}V^{-1}(d\psi+A)^2 + \sqrt{\mathcal{P}}V\,d\vec{y}\cdot d\vec{y}$$

u = null time; (v, ψ) define a double S¹ fibration over a flat R³ base with coordinates, y.
Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4 : Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

(Gutowski, Martelli and Reall)

$$ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} \frac{(dv+\beta)(du+\omega-\frac{1}{2}Z_3(dv+\beta))}{(dv+\beta)} + \sqrt{\mathcal{P}}V^{-1}(d\psi+A)^2 + \sqrt{\mathcal{P}}V d\vec{y} \cdot d\vec{y}$$

u = null time; (v, ψ) define a double S¹ fibration over a flat R³ base with coordinates, y.

The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the \mathbb{R}^3 base.

Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4 : Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions Six-dimensional metric ansatz: $ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta) (du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$ $u = \text{null time; } (v, \psi) \text{ define a double } S^1 \text{ fibration over a flat } \mathbb{R}^3 \text{ base with coordinates, y.}$ The scale of everything is set by the "warp factors:" V_3 , P and Z_3

The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the \mathbb{R}^3 base.

Building the Fluctuating BPS Microstate Geometries

IIB Supergravity on T^4 : Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions Six-dimensional metric ansatz: $ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta) (du + \omega - \frac{1}{2} Z_3 (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$ $u = \text{null time; } (v, \psi) \text{ define a double } S^1 \text{ fibration over a flat } \mathbb{R}^3 \text{ base with coordinates, y.}$ The scale of everything is set by the "warp factors:" V_3 , P and Z_3

The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the \mathbb{R}^3 base.

Maxwell Fields

$$G^{(a)} = d \left[-\frac{1}{2} \frac{\eta^{ab} Z_b}{\mathcal{P}} \left(du + \omega \right) \wedge \left(dv + \beta \right) \right] + \frac{1}{2} \eta^{ab} *_4 DZ_b + \frac{1}{2} \left(dv + \beta \right) \wedge \Theta^{(a)}$$
$$\mathcal{P} \equiv \frac{1}{2} \eta^{ab} Z_a Z_b \equiv Z_1 Z_2 - \frac{1}{2} Z_4^2$$

Building the Fluctuating BPS Microstate Geometries

Six-dimensional metric ansatz: (Gutowski, Martelli and Reall) $ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} \frac{(dv+\beta)(du+\omega-\frac{1}{2}Z_3(dv+\beta))}{4} + \sqrt{\mathcal{P}}V^{-1}(d\psi+A)^2 + \sqrt{\mathcal{P}}V\,d\vec{y}\cdot d\vec{y}$ u = null time; (v, ψ) define a double S¹ fibration over a flat R³ base with coordinates, y. The scale of everything is set by the "warp factors:" V_{3} P and Z_{3} **S**¹(v) The non-trivial homology cycles are defined through the pinching | S¹(ψ) off of the $S^1 \times S^1$ fibration at special points in the \mathbb{R}^3 base. V(i) R³ Maxwell Fields $G^{(a)} = d \left[-\frac{1}{2} \frac{\eta^{ab} Z_b}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) \right] + \frac{1}{2} \eta^{ab} *_4 D Z_b + \frac{1}{2} (dv + \beta) \wedge \Theta^{(a)}$ $\mathcal{P} \equiv \frac{1}{2} \eta^{ab} Z_a Z_b \equiv Z_1 Z_2 - \frac{1}{2} Z_4^2$

IIB Supergravity on T^4 : Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Layer 1: Conditions on Maxwell Fields A homogeneous linear system $\Theta^{(a)} = *_4 \Theta^{(a)}, \quad *_4 D(\partial_v Z_a) = \eta_{ab} D\Theta^{(b)}, \quad D *_4 DZ_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta.$ where $D\Phi \equiv d_{(4)} \Phi - \beta \wedge \partial_v \Phi$ $(Z_a, \Theta^{(a)})$ depend upon (r, θ) and

$$\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$$

Layer 1: Conditions on Maxwell Fields A homogeneous **linear** system $\Theta^{(a)} = *_4 \Theta^{(a)}, \quad *_4 D(\partial_v Z_a) = \eta_{ab} D\Theta^{(b)}, \quad D *_4 DZ_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta.$ where $D\Phi \equiv d_{(4)} \Phi - \beta \wedge \partial_v \Phi$ $(Z_a, \Theta^{(a)})$ depend upon (r, θ) and

$$\chi_{k,m,n} \;\equiv\; R^{-1} \left(m+n
ight) v \;+\; rac{1}{2} \left(k-2m
ight) \psi \;-\; rac{1}{2} \, k \, \phi$$

General solution known for two-centered geometries!

Layer 1: Conditions on Maxwell Fields A homogeneous linear system $\Theta^{(a)} = *_4 \Theta^{(a)}, \quad *_4 D(\partial_v Z_a) = \eta_{ab} D\Theta^{(b)}, \quad D *_4 DZ_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta.$ where $D\Phi \equiv d_{(4)} \Phi - \beta \wedge \partial_v \Phi$ $(Z_a, \Theta^{(a)})$ depend upon (r, θ) and $\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$

General solution known for two-centered geometries!

Layer 2: Conditions on Metric pieces An inhomogeneous linear system $ds_{6}^{2} = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta) (du + \omega - \frac{1}{2} Z_{3} (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^{2} + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$ $D\omega + *_{4} D\omega - Z_{3} d\beta = Z_{a} \Theta^{(a)}$ $*_{4} D *_{4} (\partial_{v} \omega + \frac{1}{2} DZ_{3}) = \partial_{v}^{2} \mathcal{P} - ((\partial_{v} Z_{1}) (\partial_{v} Z_{2}) - \frac{1}{2} (\partial_{v} Z_{4})^{2}) - \frac{1}{4} \eta_{ab} *_{4} \Theta^{(a)} \wedge \Theta^{(b)}$ $(Z_{3}, \omega) \text{ depend upon (r, \theta) and (quadratic) products of harmonics that depend upon}$ $\chi_{k_{i},m_{i},n_{i}} = R^{-1} (m_{i} + n_{i}) v + \frac{1}{2} (k_{i} - 2m_{i}) \psi - \frac{1}{2} k_{i} \phi$

Layer 1: Conditions on Maxwell Fields A homogeneous linear system $\Theta^{(a)} = *_4 \Theta^{(a)}, \quad *_4 D(\partial_v Z_a) = \eta_{ab} D\Theta^{(b)}, \quad D *_4 DZ_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta.$ where $D\Phi \equiv d_{(4)} \Phi - \beta \wedge \partial_v \Phi$ $(Z_a, \Theta^{(a)})$ depend upon (r, θ) and $\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$

 $\lambda \kappa, m, n - \kappa (m + m) \delta + 2 (m + 2m) \phi$

General solution known for two-centered geometries!

ayer 2: Conditions on Metric pieces An inhomogeneous linear system

$$ds_{6}^{2} = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta) (du + \omega - \frac{1}{2} Z_{3} (dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^{2} + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$$

$$D\omega + *_{4} D\omega - Z_{3} d\beta = Z_{a} \Theta^{(a)}$$

$$*_{4} D *_{4} (\partial_{v} \omega + \frac{1}{2} DZ_{3}) = \partial_{v}^{2} \mathcal{P} - ((\partial_{v} Z_{1}) (\partial_{v} Z_{2}) - \frac{1}{2} (\partial_{v} Z_{4})^{2}) - \frac{1}{4} \eta_{ab} *_{4} \Theta^{(a)} \wedge \Theta^{(b)}$$

$$(Z_{3}, \omega) \text{ depend upon (r, \theta) and (quadratic) products of harmonics that depend upon}$$

$$\chi_{k_{i},m_{i},n_{i}} = R^{-1} (m_{i} + n_{i}) v + \frac{1}{2} (k_{i} - 2m_{i}) \psi - \frac{1}{2} k_{i} \phi$$

Interesting families of particular solutions known. General solution not known.

Linear system of gravitational BPS equations:

Critical to constructing the holographic duals of a generic superpositions of the states on multiple, independent strands:

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left[\bigotimes_{k_{i},m_{i},n_{i}} \left(\frac{1}{m_{i}!n_{i}!} \left(J_{-1}^{+}\right)^{m_{i}} \left(L_{-1}-J_{-1}^{3}\right)^{n_{i}} |00\rangle_{k_{i}}\right)^{N_{k_{i},m_{i},n_{i}}}\right]$$

Add pure momentum states

 $(|+\frac{1}{2},+\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{n!} \left(L_{-1} - J_{-1}^3\right)^n |00\rangle_1\right)^{N_{1,0,n}}$

Add pure momentum states

 $N_0 + N_{1,0,n} = N_1 N_5$

 $Q_1 Q_5 = R^2 \left(\mathbf{a^2} + \mathbf{b^2} \right)$

Add pure momentum states

 $N_0 + N_{1,0,n} = N_1 N_5$

$$Q_1 Q_5 = R^2 \left(\mathbf{a^2} + \mathbf{b^2} \right)$$

Can make N_P large, $j_L = j_R \rightarrow 0$

$$(|+\frac{1}{2},+\frac{1}{2}\rangle_{1})^{N_{0}} \otimes \left(\frac{1}{n!}\left(L_{-1}-J_{-1}^{3}\right)^{n}|00\rangle_{1}\right)^{N_{1,0,n}}$$

$$j_{L} = \tilde{j}_{R} = \frac{1}{2}\mathcal{N}a^{2}$$

$$N_{P} = \frac{1}{2}\mathcal{N}\frac{n}{k}b^{2}$$

$$P \text{ excitations}$$
All angular momentum = 0

Add pure momentum states

 $N_0 + N_{1,0,n} = N_1 N_5$

<u>Geometry:</u>

Flat Space

 $AdS_3 \times S^3$

$$Q_1 Q_5 = R^2 (\mathbf{a^2 + b^2})$$

Can make N_P large, $j_L = j_R \rightarrow 0$

 $BTZ \times S^3 =$

 $AdS_2 \times S^1 \times S^3$

Flat Space ->

Scale of S¹ stabilizes at $\rho_* \ell_{AdS} R$

Add pure momentum states

 $N_0 + N_{1,0,n} = N_1 N_5$

$$Q_1 Q_5 = R^2 (\mathbf{a^2 + b^2})$$

Can make N_P large, $j_L = j_R \rightarrow 0$

Smooth cap

Add pure momentum states

 $N_0 + N_{1,0,n} = N_1 N_5$

$$Q_1 Q_5 = R^2 (\mathbf{a^2 + b^2})$$

Can make N_P large, $j_L = j_R \rightarrow 0$

Angular momentum $\equiv 0$

Smooth cap

Several significant results

Several significant results

- First deep, scaling microstate geometry in Black-Hole regime with $j_L = j_R \rightarrow 0$
- Deep, scaling microstate geometry that goes to BTZ
- Deep, scaling ⇒ Arbitrarily large red-shifts
 Microstate Geometry ⇒ Smooth cap-off
- Momentum excitations localize at the bottom of the BTZ throat
- Holographic dictionary in AdS_3 for deep AdS_2/BTZ throat
- Geometry dual to states counted by Strominger-Vafa

Phase dependence of fluctuations:

 $\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$

Phase dependence of fluctuations:

$$\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$$

<u>Standard dimensional reduction</u> to five dimensions on v fiber: Must set m = n = 0

Phase dependence of fluctuations:

$$\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$$

<u>Standard dimensional reduction</u> to five dimensions on v fiber: Must set m = n = 0

⇒ Kill all the interesting modes

Phase dependence of fluctuations:

$$\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$$

<u>Standard dimensional reduction</u> to five dimensions on v fiber: Must set m = n = 0

⇒ Kill all the interesting modes

However:

For k = 2m the solutions are independent of ψ , the Hopf fiber of the S³

→ Reduction of fluctuating D1-D5 solutions (superstrata) to five-dimensional microstate geometries: capped BTZ × S²

Phase dependence of fluctuations:

$$\chi_{k,m,n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k-2m) \psi - \frac{1}{2} k \phi$$

<u>Standard dimensional reduction</u> to five dimensions on v fiber: Must set m = n = 0

⇒ Kill all the interesting modes

However:

For k = 2m the solutions are independent of ψ , the Hopf fiber of the S³

→ Reduction of fluctuating D1-D5 solutions (superstrata) to five-dimensional microstate geometries: capped BTZ × S²

Before doing this: first enrich the family of solutions

It is relatively easy to generalize the entire IIB construction to include a KKM dipole charge, κ , to the D1-D5 system

Some T-dualities

Starting configuration

IIB	0	1	2	3	4	5	6	7	8	9
D1	1	*	*	*	*	1	\leftrightarrow	\leftrightarrow	+	+
D5	1	*	*	*	*	1	1	1	1	1
KKM	1	*	*	*	1	1	1	1	1	1

Some T-dualities

Starting configuration

IIB	0	1	2	3	4	5	6	7	8	9
D1	1	*	*	*	*	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	$ \leftrightarrow $
D5	1	*	*	*	*	1	1	1	1	Ť
KKM	1	*	*	*	1	1	1	1	1	1
T-dualize 3 times to IIA:					¥				¥	¥
IIA	0	1	2	3	4	5	6	7	8	9
D4	1	*	*	*	1	1	+	+		1
D4	1	*	*	*	1	1	1	1	+	+
NS5	1	*	*	*	+	1	1	1		1

<u>Some T-dualities</u>

Starting configuration

IIB	0	1	2	3	4	5	6	7	8	9
D1	1	*	*	*	*	1	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
D5	1	*	*	*	*	1	1	1	1	1
KKM	1	*	*	*	1	1	1	1	1	1

•

T-dualize 3 times to IIA:

IIA	0	1	2	3	4	5	6	7	8	9
D4	1	*	*	*	1	1	+	\leftrightarrow	1	1
D4	1	*	*	*	1	1	1	1	+	+
NS5	1	*	*	*	$ \leftrightarrow $	1	1	1	1	1

Uplift to M theory

Μ	0	1	2	3	5	4	10	6	7	8	9
M5	1	*	*	*	1	1	1	\leftrightarrow	+	1	1
M5	1	*	*	*	1	1	Ť	1	1	\leftrightarrow	+
M5	1	*	*	*	1	+	↔	1	1	1	1

M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ)

+ dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on ψ lattice:

D1-D5-KKM (4,4) supersymmetry → M5-M5-M5 (0,4) supersymmetry

M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ) + dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on ψ lattice:

D1-D5-KKM (4,4) supersymmetry → M5-M5-M5 (0,4) supersymmetry

Add momentum along common circle (5) ... untouched in duality

IB	0	1	2	3	4	5	6	7	8	9
D1	1	*	*	*	*	1	\Leftrightarrow	\leftrightarrow	\leftrightarrow	$ \Longleftrightarrow $
D5	1	*	*	*	*	1	Ť	1	1	
KKM		*	*	*	1			1	1	
Ρ	1					1				

М	0	1	2	3	5	4	10	6	7	8	9
M5	1	*	*	*	1	1	1	\leftrightarrow	+	1	
M5	1	*	*	*	1	1	1	1	1	+	\leftrightarrow
M5	1	*	*	*	1	\leftrightarrow	\leftrightarrow	1	1	1	1
Ρ	1				1						

M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ) + dipolar/dissolved M2-M2-M2 charges

Dualities + compactification on ψ lattice:

D1-D5-KKM (4,4) supersymmetry → M5-M5-M5 (0,4) supersymmetry

Add momentum along common circle (5) ... untouched in duality

IB	0	1	2	3	4	5	6	7	8	9
D1	1	*	*	*	*	1	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
D5	1	*	*	*	*	1	Ť	1	1	1
KKM	1	*	*	*	1	1		1	1	1
Ρ										

М	0	1	2	3	5	4	10	6	7	8	9
M5	1	*	*	*	1	1	1	\leftrightarrow	\leftrightarrow	1	1
M5	1	*	*	*			1	1	1	\leftrightarrow	\leftrightarrow
M5	1	*	*	*		\leftrightarrow	\leftrightarrow	1	1	1	
Ρ	1				1						

→ Momentum excitations of MSW string wrapping (5) direction ...

<u>MSW string vs M5 on T⁶ (or K3 × T²)</u>

- ▶ MSW: Single M brane wrapped on very ample divisor of CY₃
- ► Here: Multiple, disjoint M branes T⁴'s in T⁶

<u>MSW string vs M5 on T⁶ (or K3 × T²)</u>

- MSW: Single M brane wrapped on very ample divisor of CY₃
- ► Here: Multiple, disjoint M branes T⁴'s in T⁶
- Non-trivial fluctuations require turning deforming Kahler moduli of the tori, "bending" disjoint M5's into one another ...

Universality of the five-dimensional solution:

• We have reduced to five-dimensions and so our solution is valid for any Calabi-Yau compactification with the same set of M5-brane charges

<u>Deconstruction</u>: Attempts to realize black-hole microstate structure with perturbative/singular D0 branes or perturbative momenta on "Deconstructed" MSW string

<u>Deconstruction</u>: Attempts to realize black-hole microstate structure with perturbative/singular D0 branes or perturbative momenta on "Deconstructed" MSW string

<u>Here:</u> Precise, fully back-reacted, capped-off $BTZ \times S^2$ realization of the deconstructed configurations ...

..... related to D1-D5-P microstate structure
We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
- First deep, scaling microstate geometry in Black-Hole Regime with j_L = j_R → 0
- Deep, scaling geometry going to BTZ × S³ or BTZ × S²
- Momentum excitations localize at bottom of throat and create smooth cap
- Holographic dictionary in AdS₃ for deep AdS₂/BTZ throat

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
- First deep, scaling microstate geometry in Black-Hole Regime with j_L = j_R → 0
- Deep, scaling geometry going to BTZ × S³ or BTZ × S²
- Momentum excitations localize at bottom of throat and create smooth cap
- Holographic dictionary in AdS₃ for deep AdS₂/BTZ throat
- Microstate geometries for MSW ... and that fully realize deconstruction

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
- First deep, scaling microstate geometry in Black-Hole Regime with j_L = j_R → 0
- Deep, scaling geometry going to BTZ × S³ or BTZ × S²
- Momentum excitations localize at bottom of throat and create smooth cap
- Holographic dictionary in AdS₃ for deep AdS₂/BTZ throat
- Microstate geometries for MSW ... and that fully realize deconstruction
- Microstate geometries capture large-scale universal features of all(?) black-hole microstate descriptions: MSW/D1-D5-P/Denconstruction/Quiver QM

- We have explicit microstate geometries that are holographic duals to precise families of D1-D5-P CFT states
- First deep, scaling microstate geometry in Black-Hole Regime with j_L = j_R → 0
- Deep, scaling geometry going to $BTZ \times S^3$ or $BTZ \times S^2$
- Momentum excitations localize at bottom of throat and create smooth cap
- Holographic dictionary in AdS₃ for deep AdS₂/BTZ throat
- Microstate geometries for MSW ... and that fully realize deconstruction
- Microstate geometries capture large-scale universal features of all(?) black-hole microstate descriptions: MSW/D1-D5-P/Denconstruction/Quiver QM

Open issues

- Twisted sector excitations. Relation to multi-centered geometries?
- Holography/CFT states of MSW string dual to new microstate geometries
- Probe the IR physics/large-t correlators of these new geometries