

Sphere Packing and Quantum Gravity

Dalimil Mazáč C.N. Yang Institute & Simons Center, Stony Brook

Based on work with T. Hartman and L. Rastelli: 1905.01319

and earlier work D.M.: 1611.10060

D.M. + M. Paulos: 1803.10233

Quantum Gravity and the Bootstrap

Interested in understanding the landscape of consistent theories of quantum gravity.

A theory of quantum gravity in AdS is consistent

The dual CFT satisfies bootstrap constraints.

Probe the boundary of the landscape using the bootstrap.

General expectation: UV consistency requires other states besides gravitons in the spectrum (black holes, KK modes, string modes).

Concrete goal for today:

Look for an upper bound on the mass of the lightest non-graviton state.

c.f. WGC [Arkani-Hamed, Motl, Nicolis, Vafa '06]

Does pure gravity exist as a fully consistent quantum theory?

only gravitons and black holes in the spectrum

The Main Result

The task is particularly sharp in AdS₃/CFT₂, where gravitons = Virasoro descendants of the vacuum. [Witten '07; Maloney, Witten '07]

We want a universal upper bound on $\,\Delta\,$ of the lightest non-vacuum Virasoro primary at large central charge c .

Modular invariance and unitarity imply such a bound with $\Delta \lesssim \frac{c}{6}$. [Hellerman '09]

Our main new result:

Theorem: Every unitary 2D CFT with $c \ge 12$ contains a Virasoro primary (other than identity) with

$$\Delta < \frac{c}{8} + \frac{1}{2}.$$

The proof uses mainly the technique of analytic functionals, developed recently in the context of the correlator bootstrap. [DM '16; DM, Paulos '18]

Along the way will uncover a very close connection to the recent solution of the sphere packing problem in dimensions 8 and 24.

[Cohn, Elkies '01; Viazovska '16; Cohn, Kumar, Miller, Radchenko, Viazovska '16]

The Main Result

Theorem: Every unitary 2D CFT with $c \geq 12\,$ contains a Virasoro primary (other than identity) with

$$\Delta < \frac{c}{8} + \frac{1}{2}.$$

Stronger bound at large central charge

$$\Delta < \underbrace{\frac{2c}{17}}_{\sim} + O(1)$$

$$\sim \frac{c}{8.5}$$

Road Map

- 1. Virasoro Modular Bootstrap
 - AdS₃/CFT₂ and the modular bootstrap
 - Analytic functionals review
 - Proof of the main theorem

2. Sphere Packing Problem

- Sphere packing review
- Bounds from linear programming
- The solution in 8 and 24 dimensions from the analytic bootstrap

AdS₃/CFT₂ and the Modular Bootstrap

weakly-coupled gravity \Leftrightarrow $\ell_{\mathrm{AdS}} \gg \ell_{\mathrm{Planck}} \Leftrightarrow$ $c \gg 1$ gravitons $|\Omega\rangle, L_{-2}|\Omega\rangle, L_{-2}L_{-2}|\Omega\rangle, \dots$ $|BH\rangle$ $\Delta_{
m gap}$

Torus partition function at zero angular potential

$$Z(\tau) = \sum_{\text{states}} q^{\Delta - \frac{c}{12}} = \sum_{\text{primaries}} \chi_{\Delta}(\tau)$$

$$q = e^{2\pi i \tau}$$

$$\chi_{\Delta}(\tau) = \frac{q^{\Delta - \frac{c-1}{12}}}{\eta(\tau)^2}$$

Modular invariance
$$S: Z(\tau) = Z(-1/\tau)$$

$$\sum_{\text{primaries}} \left[\chi_{\Delta}(\tau) - \chi_{\Delta}(-1/\tau) \right] = 0$$

impossible to satisfy with vacuum module alone

Working with full-fledged CFTs, not chiral CFTs!

$$\Delta
otin \mathbb{Z}$$

$$Z(au)
eq Z(au+1)$$
 in general

Functional Bootstrap [Rattazzi, Rychkov, Tonni, Vichi '08]

Upper bounds on $\Delta_{\rm gap}$ can be found as follows:

$$\Phi_{\text{vac}}(\tau) + \sum_{\substack{\text{primaries} \\ \Delta > 0}} \Phi_{\Delta}(\tau) = 0 \qquad \Phi_{\Delta}(\tau) = \chi_{\Delta}(\tau) - \chi_{\Delta}(-1/\tau)$$

If there exists a linear functional ω acting on functions of τ such that:

$$\omega[\Phi_{\rm vac}] > 0$$

$$\omega[\Phi_{\Delta}] \geq 0$$
 for all $\Delta \geq \Delta_*$

then $\Delta_{\mathrm{gap}} < \Delta_*$.

Central question: for given central charge, what is the best (minimal) upper bound $\Delta_V(c)$, and what is the corresponding ω ?

Expectation:
$$\Delta_V(c) \sim \mu c$$
 as $c \to \infty$

What is the value of μ ?

 $\mu < \frac{1}{12} \quad \text{would prove that semi-classical pure gravity is not consistent} \\ \text{as a quantum theory.}$

Functional Bootstrap: Previous Results

Ansatz:
$$\omega = \sum_{n=0}^{N} \alpha_n \, \partial_{\tau}^{2n+1}|_{\tau=i}$$
 optimize over α_n

Analytics:
$$N=1$$
 $\Delta_V(c)<\frac{c}{6}+O(1)$ as $c\to\infty$ [Hellerman '09] no asymptotic improvement for any finite fixed N . [Friedan, Keller '13]

Numerics: Indicates that the true asymptotic bound is stronger, i.e. need to take $N \to \infty$ at fixed central charge.

Conjectures based on finite-c numerics:

$$\Delta_V(c)<rac{c}{9}+O(1)$$
 as $c o\infty$ [Collier, Lin, Yin '16]
$$\Delta_V(c)pproxrac{c}{9.08}$$
 as $c o\infty$ [Afkhami-Jeddi, Hartman, Tajdini '19]

A different construction of ω is needed to make analytic progress.

The Optimal Functional

The solution of the bootstrap with the maximal $\Delta_{\rm gap}=\Delta_V(c)$ comes together with the optimal (aka extremal) functional ω .

The optimal functional must vanish on the optimal spectrum and is non-negative above $\Delta_{\rm gap}$.

The only analytic construction of the optimal functional known so far is for the four-point function bootstrap on a line.

Nevertheless, this will be enough to prove our main theorem.

Optimal Bound for the 1D Bootstrap [DM '16; DM, Paulos '18]

Put four conformal primaries on a line: $\langle \sigma(x_1)\sigma(x_2)\sigma(x_3)\sigma(x_4)\rangle$

The crossing equation is
$$\sum_{\text{primaries}} f^2\left[G_\Delta^{(s)}(z)-G_\Delta^{(t)}(z)\right]=0 \qquad z=\text{cross-ratio}$$

$$sl(2,\mathbb{R}) \text{ conformal blocks}$$

The solution with maximal gap is the fermionic mean-field theory.

Spectrum: $2\Delta_{\sigma} + 1$, $2\Delta_{\sigma} + 3$, ...

Theorem: The OPE of two identical primaries σ in a unitary CFT always contains a non-identity conformal primary of dimensions

$$\Delta \le 2\Delta_{\sigma} + 1$$

Proof: Construct the optimal functional. Natural ansatz:

kernel is uniquely fixed from self-consistency

$$\omega[G_{\Delta}^{(s)}(z) - G_{\Delta}^{(t)}(z)] = \sin^2\left[\frac{\pi}{2}(\Delta - 2\Delta_{\sigma} - 1)\right] \int_0^1 dz \, Q_{\Delta_{\sigma}}(z) G_{\Delta}^{(s)}(z)$$

$$\mathrm{dDisc} \quad \text{c.f. [Hartman, Jain, Kundu '15; Caron-Huot '17]}$$

Back to the Torus: The Pillow Map

The torus is a double cover of the four-punctured sphere.

$$z = \frac{\theta_2(\tau)^4}{\theta_3(\tau)^4}$$

$$Z_{\rm A}(\tau) \sim \langle \sigma(0)\sigma(z)\sigma(1)\sigma(\infty)\rangle_{\rm A\times A/\mathbb{Z}_2}$$

twist-operator:
$$\Delta_{\sigma} = \frac{c}{8}$$

$$\tau \leftrightarrow -1/\tau$$
 maps to $z \leftrightarrow 1-z$

The analytic functional ω for the 1D bootstrap can be immediately applied to the modular bootstrap!

Naive conclusion from the previous slide: $\Delta_V(c) = \frac{2\Delta_\sigma + 1}{2} = \frac{c}{8} + \frac{1}{2}$

Subtlety: Virasoro characters $\neq sl(2,\mathbb{R})$ conformal blocks.

Need to check $\omega[\Phi_{\rm vac}] \geq 0$

Modular Bootstrap Conclusions [Hartman, DM, Rastelli '19]

Surprise: $\omega[\Phi_{\mathrm{vac}}]$ changes sign precisely at c=4 and c=12!

$$c \in (1,4) \cup (12,\infty)$$
 $\Delta_V(c) < \frac{c}{8} + \frac{1}{2}$ ω valid but suboptimal

$$c\in (4,12)$$

$$\Delta_V(c)>\frac{c}{8}+\frac{1}{2} \qquad \qquad \omega \quad \text{invalid}$$

At c=4 and c=12, $\frac{c}{8}+\frac{1}{2}$ is the optimal bound!

$$\Delta_V(4)=1$$
 spectrum $\Delta=1,2,3,\ldots$ $Z_4(\tau)=\frac{E_4(\tau)}{\eta(\tau)^8}$

$$\Delta_V(12)=2$$
 spectrum $\Delta=2,3,4,\ldots$ $Z_{12}(au)=j(au)-744$

8 free fermions with a GSO projection

chiral half of the monster CFT

These two cases will map to the solution of the sphere packing problem in d=8 and d=24 .

Road Map

- 1. Virasoro Modular Bootstrap
 - AdS₃/CFT₂ and the modular bootstrap
 - Analytic functionals review
 - Proof of the main theorem

- 2. Sphere Packing Problem
 - Sphere packing review
 - Bounds from linear programming
 - The solution in 8 and 24 dimensions from the analytic bootstrap

Sphere Packing Problem

Statement: Find the densest arrangement of identical non-overlapping spheres in \mathbb{R}^d .

Deep problem, connections to number theory, cryptography, etc.

$$d=1$$
 trivial

$$d=2$$
 the honeycomb lattice [Toth '40]

d=3 Kepler's conjecture: FCC lattice. Proved by [Hales '98] . Computer-assisted proof took 11 years to verify.

 $d \geq 4$ open, with the exception of:

$$d=8$$
 E_8 lattice is optimal

$$|x|^2 = 0, 2, 4, 6, \dots$$

[Viazovska '16]

self-dual lattices, spectrum:

$$d=24$$
 Leech lattice is optimal

$$|x|^2 = 0, 2, 4, 6, \dots$$

[Cohn, Kumar, Miller, Radchenko, Viazovska '16]

No requirement to be a lattice in general! Efficient packings in large d highly irregular. [Torquato, Stillinger '05]

The Sphere Packing Bootstrap [Cohn, Elkies '01]

Idea: Prove a universal upper bound on the density of any packing in \mathbb{R}^d and show that this bound is saturated by the E_8 and Leech lattice in d=8,24.

Argument to derive the bound:

- Define the partition function of a sphere packing: $Z(\tau) = \sum_{(ij)} \frac{e^{i\pi|x_i x_j|^{-\tau}}}{\eta(\tau)^d}$
- The Poisson summation formula implies $Z(\tau)$ satisfies a modular bootstrap-like identity under $\tau \leftrightarrow -1/\tau$.
- The terms in the sum are characters of $U(1)^{c}$ with central charge $c=\frac{d}{2}$.

$$\Delta_{ij} = \frac{|x_i - x_j|^2}{2}$$
 $\Delta_{\rm gap}$ "=" shortest distance between sphere centers

- Use functional bootstrap to derive an upper bound on $\Delta_{
 m gap}$
 - ⇒ upper bound on the sphere packing density

Conclusion: Modular bootstrap in the presence of $U(1)^c$ symmetry constrains the sphere-packing density in d=2c dimensions!

The Last Step: Using the Functional Again

The same optimal functionals which proved $\Delta_V(4) = 1$ and $\Delta_V(12) = 2$ apply also to the sphere packing bootstrap.

 \Rightarrow E_8 and Leech lattice are optimal in 8 and 24 dimensions.

What I have described is a condensed version of Viazovska's solution.

Summary

The first non-identity primary in a unitary 2D CFT satisfies $\Delta_{\rm gap} < \frac{c}{8} + \frac{1}{2}$ provided c > 12.

The result can be strenghtened to $\Delta_{\rm gap} < \frac{2c}{17} + O(1)$ at large central charge.

Via AdS/CFT, this gives a rigorous constraint on the spectrum of black hole microstates in any 3D theory of quantum gravity in AdS.

The bounds were derived from unitarity and modular invariance using analytic functionals.

A very similar bound constrains the density of sphere packings in \mathbb{R}^d .

In this context, the analytic functionals were discovered independently by Viazovska, leading to the solution of the sphere-packing problem in 8 and 24 dimensions.

Open questions

What is the true asymptotics of the Virasoro modular bootstrap bound at large c? Can pure gravity be ruled out, perhaps with some extra assumptions?

[Benjamin, Ooguri, Shao, Wang '19]

What is the asymptotics of the Cohn-Elkies sphere packing bound in large dimension? Is it better than the best bound currently known? $\Delta \sim c/9.795$

[Kabatiansky, Levenshtein '78]

Combine our technique with the complex tauberian theorems to get more detailed information about the spectrum? [Mukhametzhanov, Zhiboedov '19]

How deep is the analogy between CFTs and sphere packings?

I explained that the simplest constraint agrees on the two sides. A variety of other constraints exists:

modular bootstrap with spin, four-point function crossing, higher genus, ...

? n-point correlations between spheres,

Hints:

Black holes in quantum gravity exhibit chaos.

[Susskind, Shenker, Stanford, Maldacena, Kitaev, Hayden, Preskill, ...]

Large scaling dimensions (UV)

Efficient packings in a large number of dimensions are highly disordered.

[Torquato, Stillinger '05]

 \sim Large distances in the packing (IR)

Thank you!

Dictionary

3D quantum gravity

central charge c

Virasoro² symmetry

partition function

parameter

 $Z(\tau) = \sum_{\text{primaries}} \frac{e^{2\pi i \tau (\Delta - \frac{c-1}{12})}}{\eta(\tau)^2}$

scaling dimension

optimal bounds

c=4: $\Delta_{\mathrm{gap}} \leq 1$ c=12: $\Delta_{\mathrm{gap}} \leq 2$

sphere packing

dimension of space d=2c

$$U(1)^c \times U(1)^c$$

$$Z(\tau) = \sum_{\substack{\text{pairs of}\\ \text{spheres}}} \frac{e^{\pi i \tau |x_i - x_j|^2}}{\eta(\tau)^d}$$

distance in \mathbb{R}^d $r = \sqrt{2\Delta}$

 E_8 lattice optimal in d=8

Leech lattice optimal in d=24