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Quantum Gravity and the Bootstrap

Interested in understanding the landscape of consistent theories of
guantum gravity.

A theory of quantum gravity & The dual CFT satisfies
in AdS is consistent bootstrap constraints.

Probe the boundary of the landscape using the bootstrap.

General expectation: UV consistency requires other states besides gravitons in
the spectrum (black holes, KK modes, string modes).

Concrete goal for today:

i L ook for an upper bound on the mass of the lightest non-graviton state. |

c.f. WGC [Arkani-Hamed, Motl, Nicolis, Vafa '06]

Does pure gravity exist as a fully consistent guantum theory?

A\ only gravitons and black holes in the spectrum



The Main Result

The task is particularly sharp in AdSz/CFT2, where gravitons = Virasoro
descendants of the vacuum. [Witten 07; Maloney, Witten "07]

We want a universal upper bound on A of the lightest non-vacuum
Virasoro primary at large central charge c.

Modular invariance and unitarity imply such a bound with A < [Hellerman *09]

SO

Our main new result:

| Theorem: Every unitary 2D CFT with ¢ > 12 contains a Virasoro
| primary (other than identity) with

C 1 ,
A< — 4+ — {

The proof uses mainly the technique of analytic functionals,

- DM *16; DM, Paulos ‘18
developed recently in the context of the correlator bootstrap. ' aulos 18]

Along the way will uncover a very close connection to the recent solution of
the sphere packing problem in dimensions 8 and 24.

[Cohn, Elkies '01; Viazovska '16; Cohn, Kumar, Miller, Radchenko, Viazovska ’16]



The Main Result

' Theorem: Every unitary 2D CFT with ¢ > 12 contains a Virasoro
| primary (other than identity) with

c 1 |
A< =+ = i

Stronger bound at large central charge

A <+ O(1)

N ————

D



Road Map

~—% 1. Virasoro Modular Bootstrap
 AdS3/CFT2 and the modular bootstrap

* Analytic functionals review

* Proof of the main theorem

2. Sphere Packing Problem

* Sphere packing review
* Bounds from linear programming
* The solution in 8 and 24 dimensions

from the analytic bootstrap



AdS3/CFT2 and the Modular Bootstrap

weakly-coupled gravity < £ads > lPlanck <& c¢>1

gravitons

’Q>, L_2|Q>, L_QL_2’Q>,... ‘(’)> ’BH>

0 Agap ~ 1—02 A
Torus partition function at zero angular potential oin

q=e
A C qA_%
states primaries 77(7_)

Modular invariance  S: Z(r) = Z(-1/7) i Working with full-fledged

CFTs, not chiral CFTs!

A&7
3 [alr) —xal-1/m) =0 | 7
primaries / Z(T) # Z(T _I_ 1)

In general

iImpossible to satisfy with vacuum module alone



:UﬂCtiOF a‘ BOOtStrap [Rattazzi, Rychkov, Tonni, Vichi ’08]

Upper bounds on A,,, can be found as follows:

Pac(T) + Z Pa(T) =0 PA(T) = xa(T) — xa(=1/7)
prlin>a1(")1es
It there exists a linear functional w acting on functions of 7 such that:
W[ Pyac] >0

w|®a]l >0 forall A> A,
then Agp < A

Central question: for given central charge, what is the best (minimal)
upper bound Ay (¢), and what is the corresponding w 7

Expectation: Ay(c)~puc as ¢— o0
What is the value of u 7

- 1 would prove that semi-classical pure gravity is not consistent
=12 asa guantum theory.



—-unctional Bootstrap: Previous Results

N
Ansatz:  w= )Y a,02""|.—; optimize over ax

n=0
Analytics: N =1 Ay(c) < g + O(1) as ¢ — OO [Hellerman ’09]

no asymptotic improvement for any finite fixed /N. [Friedan, Keller *13]

Numerics: Indicates that the true asymptotic bound is stronger, i.e.
need to take N — oo at fixed central charge.

Conjectures based on finite-c numerics:

C
Ay (c) < 5 +0(1) as ¢ — o [Collier, Lin, Yin *16]
- C
AV(C) ~ 9.0 as ¢Cc — o0 [Afkhami-Jeddi, Hartman, Tajdini ’19]

A different construction of w is needed to make analytic progress.



The Optimal Functional

The solution of the bootstrap with the maximal Agap = Ay (c)
comes together with the optimal (aka extremal) functional w .

The optimal functional must vanish on the optimal spectrum and is
non-negative above Ag,p .

w|[PAa|

60000 |-
40000}

20000

20000}

The only analytic construction of the optimal functional known so far
is for the four-point function bootstrap on a line.

Nevertheless, this will be enough to prove our main theorem.



Op’[lma\ Bound for the 1D BOOtStrap [DM *16; DM, Paulos *18]

Put four conformal primaries on a line:  (o(x1)o(x2)o(x3)o(xy))

The crossing equation is Z f? [G(A‘S)(z) — GX)(z)} =0 Z = cross-ratio

primaries \\—- V\

sl(2,R) conformal blocks

The solution with maximal gap is the fermionic mean-field theory.
Speotrum 2A + 1 2A + 3

Theorem: The OPE of two |dent|ca| primaries 0 in a umtary CFT aIvvays 1
| contains a non-identity conformal primary of dimensions

A <2A, +1

Proof: Construct the optimal functional. Natural ansatz: kernel is uniquely fixed

. from self-consistency
-

Wl6)(2) - G (@) = sin? [F(A 28, = 1)] [ d2Qa, (216X (2)

T» 0

dDisc ec.f. [Hartman, Jain, Kundu ’15; Caron-Huot ’17]



B3ack to the Torus: The Pillow Map

The torus is a double cover
of the four-punctured sphere.

L 0a(1)*
(93(7')4
Za(7) ~ (0(0)0(2)0(1)0(00)) axc Az, twist-operator: A, = g

T4+ —1/7 mapsto z<<1-—=z

The analytic functional w for the 1D bootstrap can be immediately
applied to the modular bootstrap!

. . . . 20, +1 ¢
Naive conclusion from the previous slide:  Av(e) = ——— =+

DO | =

Subtlety: Virasoro characters # si(2,R) conformal blocks.

Need to check w[®yac] >0



Modular Bootstrap ConcluSionsS  sarman, ow, rasteii 1o

Surprise: w|®vac] changes sign precisely at ¢ =4 and ¢ = 12!

W[ Pyac] >0 W[ Pyac] <0 W|[Pyac] >0
T s m m e e o o e B I I
1 1 19 c
1
ce(L9YU2,00)  Ay()<c+5  w valid but suboptimal
c € (4,12) Ay (c) > g 1 % w invalid

1
At c=4 and ¢=12, 5+ isthe optimal bound!

__ _ Ey(7) 8 free fermions with
AV(4) =1 spectrum A=1,23,... Z4(7_) — 77(7')8 a GSO projection
Ay(12) =2 spectrum A =23,4,... Ziao(t)=j(r)—744  chiral half of the

monster CFT

These two cases will map to the solution of the sphere packing
problemin d=8 and d =24 .



Road Map

1. Virasoro Modular Bootstrap
 AdS3/CFT2 and the modular bootstrap

* Analytic functionals review

* Proof of the main theorem

2. Sphere Packing Problem

* Sphere packing review
* Bounds from linear programming
* The solution in 8 and 24 dimensions

from the analytic bootstrap



Sphere Packing Problem

Statement: Find the densest arrangement of identical non-overlapping spheres in R?

Deep problem, connections to number theory, cryptography, etc.

d=1 trivial

d=2 the honeycomb lattice  [Toth *40]

J— 3 Kepler's conjecture: FCC lattice. Proved by [Hales 98] . o' v}“‘
Computer-assisted proof took 11 years to verify. { )

d>4 open, with the exception of:

d=28 Lg lattice is optimal \x\z =0,2,4,6,...

[Viazovska "16] self-dual lattices, spectrum:

d =24 Leech lattice is optimal z|* = O,X 4,0, ...

[Cohn, Kumar, Miller, Radchenko, Viazovska ’16]

No requirement to be a lattice in general! Efficient packings in large d highly irregular.
[Torquato, Stillinger ’05]



The Sphere Paekmg BOOtstrap [Cohn, Elkies '01]

Idea Prove a unrversal upper bound on the densrty of any paekrng IN Rd |

';f and show that this bound is saturated by the Lg and Leech lattice in d = 8,24 _,

Argument to derive the bound:

im|x; —ax;|?T

 Define the partition function of a sphere packing: Z(r) = Z c
(¢7)
* The Poisson summation formula implies Z(7) satisfies a modular
bootstrap-like identity under 7 <» —1/7.

n(T)

. .o d
* The terms in the sum are characters of U(1)“ with central charge ¢ = — .

- r.|?
Ajj = 4 2:87' Ag,p =" shortest distance between sphere centers

* Use functional bootstrap to derive an upper bound on Agap,

—> upper bound on the sphere packing density



Conclusion: Modular bootstrap in the presence of U(1)° symmetry
constrains the sphere-packing density in d = 2¢ dimensions!

0 —
As Functional bootstrap (aka Cohn-Elkies) bouna
0.1 [
log(density)
-0.2 -
d
-0.3 - |
best known packings
| | | 1 1 1 | | |
0 5 10 15 20 25 30



The Last Step: Using the Functional Again

0.02

sphere packing
0.01 = \/irasoro

max(Agap) — oy
.
—-0.02
-0.03
004l 1o

| | i | | | | L\
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C

The same optimal functionals which proved Ay (4) =1 and Ay (12) =2
apply also to the sphere packing bootstrap.

—> FEs and Leech lattice are optimal in 8 and 24 dimensions.

What | have described is a condensed version of Viazovska’s solution.



sSummary

The first non-identity primary in a unitary 2D CFT satisfies Agp < = + L

. 2
provided ¢ > 12. 5

The result can be strenghtened to A,,, < f—; + O(1) at large central charge.

Via AdS/CFT, this gives a rigorous constraint on the spectrum of black
hole microstates in any 3D theory of quantum gravity in AdS.

The bounds were derived from unitarity and modular invariance using analytic
functionals.

A very similar bound constrains the density of sphere packings in RY,

In this context, the analytic functionals were discovered independently
by Viazovska, leading to the solution of the sphere-packing problem in
8 and 24 dimensions.



Open gquestions

What is the true asymptotics of the Virasoro modular bootstrap bound at large c¢?
Can pure gravity be ruled out, perhaps with some extra assumptions?
[Benjamin, Ooguri, Shao, Wang ’19]
What is the asymptotics of the Cohn-Elkies sphere packing bound in large
dimension? |s it better than the best bound currently known? A ~ ¢/9.795
[Kabatiansky, Levenshtein 78]

Combine our technigque with the complex tauberian theorems to
get more detailed information about the spectrum? [Mukhametzhanov, Zhiboedov "19]

How deep is the analogy between CFTs and sphere packings?

| explained that the simplest constraint agrees on the two sides. A variety of other
constraints exists:

modular bootstrap with spin, four-point ~ ? n-point correlations between spheres,
function crossing, higher genus, ... ~

Hints:

Black holes in quantum gravity
exhibit chaos.

[Susskind, Shenker, Stanford, Maldacena,
Kitaev, Hayden, Preskill, ...]

Efficient packings in a large number of
~ dimensions are highly disordered.
[Torquato, Stillinger ’05]

Large scaling dimensions (UV) ~  Large distances in the packing (IR)



Thank you!



parameter

symmetry

partition function

scaling dimension

optimal bounds

3D quantum gravity

central charge ¢

: 2
Virasoro

Dictionary

sphere packing

dimension of space d = 2c¢

U(1)° x U(1)°

€7T7:T|£Bi—$j|2

Z(1) =

pairs of
spheres

n(T)®

distance in R  r = v2A

FEig lattice optimal ind = 8

Leech lattice optimal in d = 24



