String theory compactifications with sources

Alessandro Tomasiello
Strings 2019

Introduction

Internal D-brane or O-plane sources important in string theory compactifications

- in AdS/CFT they realize flavor symmetries
- O-planes seem necessary for de Sitter and for Minkowski beyond CY

Introduction

Internal D-brane or O-plane sources important in string theory compactifications

- in AdS/CFT they realize flavor symmetries
- O-planes seem necessary for de Sitter and for Minkowski beyond CY
[Gibbons '84, de Wit, Smit, Hari Dass '87, Maldacena, Nuñez 'oo...]
- it has been hard to find examples; often people have resorted to 'smearing'

However, O-planes should sit at fixed loci of involutions
\triangleleft they shouldn't be smeared by definition.

Plan:

I. Progress in finding solutions

II. How we introduce localized sources
III. de Sitter?

I. Geometry of solutions

- Systematic classification of BPS solutions: more successful than ad hoc Ansätze
- old methods: G-structures; gen. complex geometry, pure spinors
- Conceptual origin: calibrations. Type II, for example:
'calibration conjecture':
[Martucci, Smyth '05, Lüst, Patalong, Tsimpis 'ro...\}
collective D-brane calibration

$$
\begin{align*}
& (\mathrm{d}+H \wedge) \Phi=\left(\iota_{K}+\tilde{K} \wedge\right) F \tag{}\\
& \mathrm{~d} \Omega=-\iota_{K} * H+(\Phi, F)_{6}
\end{align*}
$$

- practically, the D-brane equation is enough for $d \geq 4$
\triangleleft pure spinor equations
\triangleleft matrix pure spinor equations for extended susy
[Passias, Solard, AT' ${ }^{\prime} 7$;
Passias, Prins, AT' ${ }^{1} 8$;
+ Macpherson, in progress]
- In general more calibration equations [eg KK-monopole] needed for sufficiency
- practically, the D-brane equation is enough for $d \geq 4$
\Rightarrow pure spinor equations
\triangleleft matrix pure spinor equations for extended susy
[Passias, Solard, AT'ı7;
Passias, Prins, AT 'ı8;
+ Macpherson, in progress]
- In general more calibration equations [eg KK-monopole] needed for sufficiency
[Legramandi, Martucci, AT 'ı8]
- Supersymmetry breaking?
- For Minkowski: sometimes possible to break susy by adding one term
to pure spinor equations [Legramandi, AT, in progress]
- Via consistent truncations
[Passias, Rota, AT, ' $\left.{ }^{15} 5 ..\right]$
- Direct solution of EoM, with some lessons from the susy case [Cordova, De Luca, AT, 'r8]
- some recent solution classes:
- some recent solution classes:
- AdS $_{7}$ in IIA:
+ susy-breaking twins
$S^{2} \rightarrow I$
[Apruzzi, Fazzi, Rosa, AT'ı3 Apruzzi, Fazzi, Passias, Rota, AT '15; Cremonesi, AT 'ı5; Bah, Passias, AT ' 17]
- some recent solution classes:
- AdS_{7} in IIA:
+ susy-breaking twins

$$
S^{2} \rightarrow I
$$

[Apruzzi, Fazzi, Rosa, AT'ı3 Apruzzi, Fazzi, Passias, Rota, AT '15; Cremonesi, AT '15; Bah, Passias, AT ' ${ }^{17}$]

- AdS5 in IIA: $\quad\left(\right.$ top. $\left.S^{3}\right) \rightarrow \Sigma_{g}$
[Apruzzi, Fazzi, Passias, Rota, AT' $\left.{ }^{5} 5\right]$ + "punctures"
[Bah ' ${ }^{5}$; Bah, Passias, AT ' ${ }^{\prime} 7$]
- some recent solution classes:
- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
+ susy-breaking twins
[Apruzzi, Fazzi, Rosa, AT'ı3 Apruzzi, Fazzi, Passias, Rota, AT ' 15 ; Cremonesi, AT ' ${ }_{5} 5$; Bah, Passias, AT ' ${ }^{\prime} 7$]
- AdS $_{4}$ in IIA
[Rota, AT's5; Passias, Prins, AT 'ı8;
Bah, Passias, Weck 'ı8]
$\left(\right.$ top. $\left.S^{2}\right) \rightarrow \mathrm{KE}_{4}, \Sigma_{g} \times \Sigma_{g^{\prime}}$
- AdS5 in IIA: $\quad\left(\right.$ top. $\left.S^{3}\right) \rightarrow \Sigma_{g}$
[Apruzzi, Fazzi, Passias, Rota, AT' $\left.{ }^{5} 5\right]$ + "punctures"
[Bah '15; Bah, Passias, AT'ı7]
- some recent solution classes:
- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
+ susy-breaking twins
[Apruzzi, Fazzi, Rosa, AT'ı3
Apruzzi, Fazzi, Passias, Rota, AT ' 15 ; Cremonesi, AT' ${ }^{\prime} 5$; Bah, Passias, AT ' 17]
- AdS_{4} in IIA

$$
\left(\text { top. } S^{3}\right) \rightarrow H_{3}, S^{3}
$$

[Rota, AT' 15 ; Passias, Prins, AT 'ı8; Bah, Passias, Weck 'ı8]

- AdS 5 in IIA: $\quad\left(\right.$ top. $\left.S^{3}\right) \rightarrow \Sigma_{g}$
[Apruzzi, Fazzi, Passias, Rota, AT'55] + "punctures"
[Bah '15; Bah, Passias, AT 'ı7]
- AdS_{3} in IIA: $\quad S^{6} \rightarrow I$
$\mathcal{N}=(0,8),(0,7): F_{4}$ and G_{3} superalg.
[Dibitetto, Lo Monaco, Petri, Passias, AT ' 18]
- some recent solution classes:
- AdS $_{7}$ in IIA: $\quad S^{2} \rightarrow I$
+ susy-breaking twins
[Apruzzi, Fazzi, Rosa, AT ’³
Apruzzi, Fazzi, Passias, Rota, AT '15; Cremonesi, AT' ${ }^{15}$; Bah, Passias, AT ${ }^{\text {' }} 17$]
- AdS_{4} in IIA

$$
\left(\text { top. } S^{3}\right) \rightarrow H_{3}, S^{3}
$$

[Rota, AT'ı5; Passias, Prins, AT 'ı8;

Almost all analytic.
For ex. $\quad e^{-2 A} d s_{M_{6}}^{2}=-\frac{1}{4} \frac{q^{\prime}}{x q} d x^{2}-\frac{q}{x q^{\prime}-4 q} D \psi^{2}+\frac{\kappa q^{\prime}}{3 q^{\prime}-x q^{\prime \prime}} d s_{\mathrm{KE}_{4}}^{2}$
$q(x)=$ deg. 6 pol.
generalizes
[Guarino, Jafferis, Varela ' ${ }^{\prime} 5$] (anal.)

- AdS_{3} in IIA:

$$
S^{6} \rightarrow I
$$

- AdS 5 in IIA: $\quad\left(\right.$ top. $\left.S^{3}\right) \rightarrow \Sigma_{g}$
[Apruzzi, Fazzi, Passias, Rota, AT’ ${ }^{\prime 5]}$ + "punctures"
[Bah ' ${ }^{5}$; Bah, Passias, AT ' ${ }^{17}$]
$\mathcal{N}=(0,8),(0,7): F_{4}$ and G_{3} superalg.
[dual to CS-matter theories]
[Petrini, Zaffaroni 'o9; Lüst, Tsimpis '09...] (num.)
formally similar to
[Gauntlett, Martelli, Sparks, Waldram 'O4] in IId
- some recent solution classes:
- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
+ susy-breaking twins
[Apruzzi, Fazzi, Rosa, AT ’³
Apruzzi, Fazzi, Passias, Rota, AT '15; Cremonesi, AT 'ı5; Bah, Passias, AT ' 17]
- AdS_{4} in IIA

$$
\left(\text { top. } S^{3}\right) \rightarrow H_{3}, S^{3}
$$

$$
\left.\underset{\text { Bah, Passias, Weck '18] }}{[\text { Rota AT's; Passias, Prins, AT } 18 ;} \text { (top. } S^{2}\right) \rightarrow \mathrm{KE}_{4}, \Sigma_{g} \times \Sigma_{g^{\prime}}
$$

[Apruzzi, Fazzi, Passias, Rota, AT'55] + "punctures" [Bah 'ı5; Bah, Passias, AT ' ${ }^{\prime} 7$]

- AdS_{3} in IIA:

$$
S^{6} \rightarrow I
$$

Almost all analytic.
For ex. $\quad e^{-2 A} d s_{M_{6}}^{2}=-\frac{1}{4} \frac{q^{\prime}}{x q} d x^{2}-\frac{q}{x q^{\prime}-4 q} D \psi^{2}+\frac{\kappa q^{\prime}}{3 q^{\prime}-x q^{\prime \prime}} d s_{\mathrm{KE}_{4}}^{2}$
$q(x)=$ deg. 6 pol.
generalizes
[Guarino, Jafferis, Varela '15] (anal.)
[dual to CS-matter theories]
[Petrini, Zaffaroni 'o9; Lüst, Tsimpis '09...] (num.)
formally similar to
[Gauntlett, Martelli, Sparks, Waldram 'O4] in IId

- relations between different cases often suggest 'correct' coordinates
- we will now see that all these admit possible sources...

II. Including sources

- Many AdS solutions have near-horizon origin

D3 dissolve; no source after near-horizon

II. Including sources

- Many AdS solutions have near-horizon origin

- Unclear if all AdS are near-horizon limits
- Intersecting brane solutions are rare anyway

- Better strategy: start from analytic classes, explore boundary conditions for sources
- Sources create singularities where supergravity breaks down

- Sources create singularities where supergravity breaks down

backreaction on flat space:	$d s_{10}^{2}=H^{0, \ldots, p} H^{-1 / 2} d s_{\\|}^{2}+H^{1 / 2} d s_{\perp}^{2}$	$e^{\phi}=g_{s} H^{(3-p) / 4}$
	$\underbrace{}_{\text {harmonic function in } \mathbb{R}_{\perp}^{9-p}}$	$d s_{\perp}^{2}=d r^{2}+r^{2} d s_{S^{8-p}}^{2}$

- supergravity artifacts: they should be resolved in appropriate duality frame

D-branes
O-planes
[$\mathrm{O} p_{-}$: tension=charge $\left.=-2^{p-5}\right]$

- Example: AdS_{7} in IIA. All solutions:

$$
\begin{gathered}
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \\
\text { interval }
\end{gathered}
$$

$$
\dddot{\alpha}=F_{0} \quad \leadsto \quad \alpha \text { piecewise cubic }
$$

$$
\begin{aligned}
& e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}} \\
& B=\pi\left(-z+\frac{\alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}} \\
& F_{2}=\left(\frac{\ddot{\alpha}}{162 \pi^{2}}+\frac{\pi F_{0} \alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
\end{aligned}
$$

- Example: AdS_{7} in IIA. All solutions:
$\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)$

$$
\dddot{\alpha}=F_{0} \quad \leadsto \quad \alpha \text { piecewise cubic }
$$

$$
\begin{aligned}
& e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}} \\
& B=\pi\left(-z+\frac{\alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}} \\
& F_{2}=\left(\frac{\ddot{\alpha}}{162 \pi^{2}}+\frac{\pi F_{0} \alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
\end{aligned}
$$

- Each BPS solution has a non-susy 'evil twin':

$$
\frac{1}{\pi \sqrt{\mathbb{\alpha}}} d s^{2}=\sqrt[12]{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

some are unstable

- Example: AdS_{7} in IIA. All solutions:

$$
\begin{aligned}
& \frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \\
& \dddot{\alpha}=F_{0} \quad \triangleleft \quad \alpha \text { piecewise cubic } \\
& e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}} \\
& B=\pi\left(-z+\frac{\alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}} \\
& F_{2}=\left(\frac{\ddot{\alpha}}{162 \pi^{2}}+\frac{\pi F_{0} \alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
\end{aligned}
$$

- Each BPS solution has a non-susy 'evil twin':

$$
\frac{1}{\pi \sqrt{\mathbb{8}}} d s^{2}=\sqrt[12]{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

[Passias, Rota, AT '15; Malek, Samtleben, Vall Camell ' 18]

some are unstable

〔Danielsson, Dibitetto, Vargas 'ı7; Apruzzi, De Luca, Gnecchi, Lo Monaco, AT, in progress]

- At endpoint, smoothness: S^{2} should shrink, $\frac{\alpha}{\ddot{\alpha}}$ finite $\quad \Rightarrow \quad \alpha \rightarrow 0, \ddot{\alpha} \rightarrow 0$
- When F_{0} jumps $\Rightarrow \mathrm{D} 8$

- Example: AdS_{7} in IIA. All solutions:

$$
\begin{aligned}
& \frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right) \\
& \dddot{\alpha}=F_{0} \quad \triangleleft \quad \alpha \text { piecewise cubic } \\
& e^{\phi}=2^{5 / 4} \pi^{5 / 2} 3^{4} \frac{(-\alpha / \ddot{\alpha})^{3 / 4}}{\sqrt{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}} \\
& B=\pi\left(-z+\frac{\alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}} \\
& F_{2}=\left(\frac{\ddot{\alpha}}{162 \pi^{2}}+\frac{\pi F_{0} \alpha \dot{\alpha}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}}\right) \operatorname{vol}_{S^{2}}
\end{aligned}
$$

- Each BPS solution has a non-susy 'evil twin':

$$
\frac{1}{\pi \sqrt{8}} d s^{2}=\sqrt[12]{-\frac{\alpha}{\bar{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\mathbf{Z} \alpha \ddot{\alpha}^{2}} d s_{S^{2}}^{2}\right)
$$

[Passias, Rota, AT '15; Malek, Samtleben, Vall Camell ' 18]
some are unstable

- At endpoint, smoothness: S^{2} should shrink, $\frac{\alpha}{\ddot{\alpha}}$ finite $\quad \Rightarrow \quad \alpha \rightarrow 0, \ddot{\alpha} \rightarrow 0$
- When F_{0} jumps $\Rightarrow \quad \mathrm{D} 8$
what happens with other boundary conditions?

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$

$$
d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2} \frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right)}
$$

$$
\mathrm{D}^{\mathrm{D}} \mathrm{C}_{\ldots}^{\mathrm{H}} \underset{\longrightarrow}{z}
$$

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$

$$
\left.d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2} \frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right.}\right)
$$

D6

- $\ddot{\alpha} \rightarrow 0$

$$
\text { transverse } \mathbb{R}^{3}
$$

$$
\left.d s_{10}^{2} \sim z^{-1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{1 / 2} \overline{\left(d z^{2}+d s_{S^{2}}^{2}\right.}\right)
$$

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$

$$
\left.d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2} \frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right.}\right)
$$

D6

- $\alpha \rightarrow 0, \dot{\alpha} \rightarrow 0$
[Bah, Passias, AT ${ }^{{ }^{\prime} 7}$]
transverse \mathbb{R}

$$
d s_{10}^{2} \sim z^{-1 / 2}\left(d s_{\mathrm{AS}_{7}}^{2}+d s_{S^{2}}^{2}\right)+\overline{z^{1 / 2} d z^{2}}
$$

O8

- $\ddot{\alpha} \rightarrow 0$
transverse \mathbb{R}^{3}

$$
d s_{10}^{2} \sim z^{-1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{1 / 2}\left(\overline{d z^{2}+d s_{S^{2}}^{2}}\right)
$$

$$
\frac{1}{\pi \sqrt{2}} d s^{2}=8 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-2 \alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

compare locally with

$$
d s_{10}^{2}=H^{-1 / 2} d s_{\|}^{2}+H^{1 / 2} d s_{\perp}^{2}
$$

- $\alpha \rightarrow 0$

$$
d s^{2} \sim z^{1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{-1 / 2}\left(\frac{\text { transverse } \mathbb{R}^{3}}{\left(d z^{2}+z^{2} d s_{S^{2}}^{2}\right.}\right)
$$

D6

- $\ddot{\alpha} \rightarrow 0$
transverse \mathbb{R}^{3}

$$
\left.d s_{10}^{2} \sim z^{-1 / 2} d s_{\mathrm{AdS}_{7}}^{2}+z^{1 / 2} \overline{\left(d z^{2}+d s_{S^{2}}^{2}\right.}\right)
$$

- $\alpha \rightarrow 0, \dot{\alpha} \rightarrow 0$
[Bah, Passias, AT $\left.{ }^{{ }^{1} 7}{ }^{2}\right]$
transverse \mathbb{R}

$$
d s_{10}^{2} \sim z^{-1 / 2}\left(d s_{A S_{7}}^{2}+d s_{S^{2}}^{2}\right)+\overline{z^{1 / 2} d z^{2}}
$$

O8

- Not always so easy...
- Supergravity artifacts, but same local behavior as solutions in flat space
- Holographic checks work with all sources

Examples
dual quiver theory [SU gauge groups]

- Holographic checks work with all sources

Examples
dual quiver theory [SU gauge groups]

$$
a=\frac{16}{7} k^{2}\left(N^{3}-4 N k^{2}+\frac{16}{5} k^{3}\right)
$$

O8+D8

Examples

D8s D8s

dual quiver theory [SU gauge groups]

susy, grav. \& R -symmetry anomalies
[Ohmori, Shimizu, Tachikawa, Yonekura 'ı4; Cordova, Dumitrescu, Intriligator ' ${ }_{5}$]
[Henningson, Skenderis '98]

$$
a=\frac{16}{7} k^{2}\left(N^{3}-4 N k^{2}+\frac{16}{5} k^{3}\right)
$$

- Holographic check of S-folds:
AdS_{4} solution: [Inverso, Trigiante, Samtleben ${ }^{2}$ r6]

sort of alternative to sources.
I was skeptical, but:
CFT3 dual: [Assel, AT'r8]

- Sources can be introduced in most classes

- AdS $_{7}$ in IIA: $\quad S^{2} \rightarrow I$
sources: D8, D6, O8, O6
- AdS_{4} in IIA $\quad\left(\right.$ top. $\left.S^{3}\right) \rightarrow H_{3}, S^{3}$
sources:
D8, D6, O8, O6 O8
$\left(\right.$ top. $\left.S^{2}\right) \rightarrow \mathrm{KE}_{4}, \Sigma_{g} \times \Sigma_{g^{\prime}}$
- AdS_{5} in IIA: $\quad\left(\right.$ top. $\left.S^{3}\right) \rightarrow \Sigma_{g}+$ "punctures" sources: D8, D6, D4, O8, O6
- AdS_{3} in IIA: $\quad S^{6} \rightarrow I$

$$
\mathcal{N}=(0,8),(0,7): F_{4} \text { and } G_{3} \text { superalg. }
$$

sources: O8

- Sources can be introduced in most classes

- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
sources: D8, D6, O8, O6
sources: D8, D6, O8, O6

$$
\mathrm{AdS}_{4} \text { in IIA } \quad\left(\text { top } \cdot S^{3}\right) \rightarrow H_{3}, S^{3}
$$

sources:
D8, D6, O8, O6 O8
$\left(\right.$ top. $\left.S^{2}\right) \rightarrow \mathrm{KE}_{4}, \Sigma_{g} \times \Sigma_{g^{\prime}}$

- AdS5 in IIA: (top. $\left.S^{3}\right) \rightarrow \Sigma_{g}$ +"punctures" sources: D8, D6, D4, O8, O6
- AdS_{3} in IIA: $\quad S^{6} \rightarrow I$

$$
\mathcal{N}=(0,8),(0,7): F_{4} \text { and } G_{3} \text { superalg. }
$$

sources: 08

- Other notable classes that admit sources:
- AdS_{6} in IIB: (p, q)-fivebranes
- AdS_{5} in 11d: M_{5}
- $\operatorname{AdS}_{4} \mathcal{N}=4$ in IIA: NS5, D5 \quad [...Assel, Bachas, Estes, Gomis ${ }^{\text {'ri, }, \text { r2] }}$
- AdS_{3} in F-theory
[D'Hoker, Gutperle, Karch, Uhlemann 'ı6...]
[Gaiotto, Maldacena 'o9...]

- Sources can be introduced in most classes

- AdS_{7} in IIA: $\quad S^{2} \rightarrow I$
sources: D8, D6, O8, O6
sources: D8, D6, O8, O6
- AdS_{4} in IIA $\quad\left(\right.$ top. $\left.S^{3}\right) \rightarrow H_{3}, S^{3}$
sources:
D8, D6, O8, O6 O8
- AdS5 in IIA: (top. $\left.S^{3}\right) \rightarrow \Sigma_{g}$ +"punctures" sources: D8, D6, D4, O8, O6
- AdS_{3} in IIA: $\quad S^{6} \rightarrow I$

$$
\mathcal{N}=(0,8),(0,7): F_{4} \text { and } G_{3} \text { superalg. }
$$

sources: 08

- Other notable classes that admit sources:
- AdS_{6} in IIB: (p, q)-fivebranes
- AdS_{5} in 11d: M_{5}
- $\operatorname{AdS}_{4} \mathcal{N}=4$ in IIA: NS5, D5 \quad [...Assel, Bachas, Estes, Gomis ${ }^{\text {'ri, }, \text { r2] }}$
- AdS_{3} in F-theory
[D'Hoker, Gutperle, Karch, Uhlemann 'ı6...]
[Gaiotto, Maldacena 'o9...]
[Couzens, Lawrie, Martelli, Schäfer-Nameki ${ }^{\text {r }} 7$;
Haghighat, Murthy, Vandoren, Vafa 'r5]
- Let's see if we can use this progress as inspiration for de Sitter...

dS

- Simplest model [Corrdova, De Luce, AT; 8 s$]$

$$
\begin{array}{r}
d s^{2}=e^{2 W(z)} d s_{\mathrm{dS}_{4}}^{2}+e^{-2 W(z)}\left(d z^{2}+e^{2 \lambda(z)} d s_{M_{5}}^{2}\right) \\
\text { compact hyperbolic }
\end{array}
$$

Minkowski: [Dabholkar, Park '96, Witten '97, Aharony, Komargodski, Patir 'o7]
see also [Silverstein, Strings 2013 talk]

dS

- Simplest model [Corrdova, De Luna, $\left.1 T^{1} ; s\right]$

$$
\begin{array}{r}
d s^{2}=e^{2 W(z)} d s_{\mathrm{dS}_{4}}^{2}+e^{-2 W(z)}\left(d z^{2}+e^{2 \lambda(z)} d s_{M_{5}}^{2}\right) \\
\text { compact hyperbolic }
\end{array}
$$

Boundary condition at $\mathrm{O} 8+$

$$
\left.e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1 \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}
$$

Minkowski: [Dabholkar, Park '96, Witten '97, Aharony, Komargodski, Patir '07]
see also [Silverstein, Strings 2013 talk]

dS

- Simplest model [Corrdova, De Luna, $\left.1 T^{\prime} ; s\right]$

$$
\begin{array}{r}
d s^{2}=e^{2 W(z)} d s_{\mathrm{dS}_{4}}^{2}+e^{-2 W(z)}\left(d z^{2}+e^{2 \lambda(z)} d s_{\underline{M_{5}}}^{2}\right) \\
\text { compact hyperbolic }
\end{array}
$$

Boundary condition at $\mathrm{O} 8+$

$$
\left.e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1 \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}
$$

Numerical evolution:
we manage to reach

$$
e^{f_{i}} \sim\left|z-z_{0}\right|^{-1 / 4}
$$

dS

- Simplest model [Corrdova, De Luce, ATr:8]

$$
\begin{array}{r}
d s^{2}=e^{2 W(z)} d s_{\mathrm{dS}_{4}}^{2}+e^{-2 W(z)}\left(d z^{2}+e^{2 \lambda(z)} d s_{M_{5}}^{2}\right) \\
\text { compact hyperbolic }
\end{array}
$$

Boundary condition at $\mathrm{O} 8+$

$$
\left.e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1 \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}
$$

Minkowski: [Dabholkar, Park '96, Witten '97, Aharony, Komargodski, Patir '07]
see also [Silverstein, Strings 2013 talk]

Numerical evolution:
we manage to reach

$$
e^{f_{i}} \sim\left|z-z_{0}\right|^{-1 / 4}
$$

- Rescaling symmetry:

$$
g_{M N} \rightarrow e^{2 c} g_{M N}, \phi \rightarrow \phi-c
$$

it makes strong-coupling region small, but it doesn't make it disappear.

- Rescaling symmetry:

$$
g_{M N} \rightarrow e^{2 c} g_{M N}, \phi \rightarrow \phi-c
$$

it makes strong-coupling region small, but it doesn't make it disappear.

- In the O8_ region stringy corrections become dominant $\ldots \gg e^{-2 \phi} R^{4} \gg e^{-2 \phi} R$
supergravity action is least important term;
ideally in this region we'd switch to another duality frame.

In other words: full string theory will fix c
it has been \sim argued that supergravity contributes to this

- Rescaling symmetry:

$g_{M N} \rightarrow e^{2 c} g_{M N}, \phi \rightarrow \phi-c$

it makes strong-coupling region small, but it doesn't make it disappear.
- In the O8_ region stringy corrections become dominant $\quad \ldots \gg e^{-2 \phi} R^{4} \gg e^{-2 \phi} R$
supergravity action is least important term;
ideally in this region we'd switch to another duality frame.

In other words: full string theory will fix c
it has been \sim argued that supergravity contributes to this

- Hope that this solution is sensible comes from similarity with flat-space O8_ (which we know to exist in string theory)
- We also tried: $\mathrm{O}_{+}-{ }^{-} \mathrm{O}_{-}$

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right)
$$

$$
\begin{aligned}
H & =h_{1} d z \wedge \operatorname{vol}_{2}+h_{2} \operatorname{vol}_{3} \\
F_{2} & =f_{2} \operatorname{vol}_{2} \\
F_{4} & =f_{41} \operatorname{vol}_{3} \wedge d z+f_{42} \operatorname{vol}_{4} \\
F_{0} & \neq 0
\end{aligned}
$$

- We also tried: $\mathrm{O}_{+}-{ }^{-} \mathbf{O}_{-}$

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right) \quad \begin{aligned}
H & =h_{1} d z \wedge \operatorname{vol}_{2}+h_{2} \operatorname{vol}_{3} \\
F_{2} & =f_{2} \operatorname{vol}_{2} \\
F_{4} & =f_{41} \operatorname{vol}_{3} \wedge d z+f_{42} \operatorname{vol}_{4} \\
F_{0} & \neq 0
\end{aligned}
$$

- we already know one such solution for $\Lambda<0$:
$\mathrm{AdS}_{4} \times \mathrm{H}_{3} \curvearrowleft$ compact hyperbolic
- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right)
$$

[functions rescaled for clarity]

- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d S_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S^{2}}^{2}\right)
$$ [functions rescaled for clarity]

- Recall: for AdS solution we can analytically 'inside the hole'

$$
\frac{1}{\sqrt{\pi}} d s^{2}=12 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d s_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S_{2}^{2}}^{2}\right)
$$ [functions rescaled for clarity]

- Recall: for AdS solution we can analytically 'inside the hole'

$$
\frac{1}{\sqrt{\pi}} d s^{2}=12 \sqrt{-\frac{\alpha}{\tilde{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

- Similar request for dS solution introduces many fine-tunings. Numerics unclear [so far]
- we slowly modified it numerically, bringing Λ up

$$
d s^{2}=e^{2 W} d s_{d s_{4}}^{2}+e^{-2 W}\left(d z^{2}+e^{2 \lambda_{3}} d s_{M_{3}}^{2}+e^{2 \lambda_{2}} d s_{S_{2}^{2}}^{2}\right)
$$ [functions rescaled for clarity]

- Recall: for AdS solution we can analytically 'inside the hole'

$$
\frac{1}{\sqrt{\pi}} d s^{2}=12 \sqrt{-\frac{\alpha}{\ddot{\alpha}}} d s_{\mathrm{AdS}_{7}}^{2}+\sqrt{-\frac{\ddot{\alpha}}{\alpha}}\left(d z^{2}+\frac{\alpha^{2}}{\dot{\alpha}^{2}-\alpha \ddot{\alpha}} d s_{S^{2}}^{2}\right)
$$

- Similar request for dS solution introduces many fine-tunings. Numerics unclear [so far]
- A perhaps more physical procedure: probe analysis

Conclusions

- A lot of progress in AdS solutions
- often localized O-plane sources are possible - holography works even in their presence
- sometimes non-supersymmetric
- Time to look for de Sitter
- Using numerics, we find dS solutions with O8-planes
in relatively simple setup
- Also O8-O6 solutions
- There are regions where supergravity breaks down.

Inevitable! If you want solutions with O-planes.
We better learn how to deal with them.

Backup slides

Possible criticism of the O8-O8 model

- $\mathrm{O}_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

Possible criticism of the O8-O8 model

- $\mathrm{O}_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$
- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Possible criticism of the O8-O8 model

- $\mathrm{O}_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$
- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway...

$$
\partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\delta \quad \Longleftrightarrow
$$

$$
\left.e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1
$$

- if we extrapolate from $\mathrm{O8}_{+}$with $a \neq 0$:

$$
\partial_{z}^{2}(\xrightarrow{\hookrightarrow})=\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow z_{0}^{+}}=1
$$

$$
e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \triangleleft \quad \text { so this works } \checkmark
$$

Possible criticism of the O8-O8 model

- $\mathrm{O}_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$
- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway...

$$
\partial_{z}^{2}(\xrightarrow[\longrightarrow]{\longrightarrow})=-\delta \quad \Longleftrightarrow
$$

$$
\left.e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1
$$

- if we extrapolate from $\mathrm{O} 8+$ with $a \neq 0$:

$$
\partial_{z}^{2}(\xrightarrow{\hookrightarrow})=\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow z_{0}^{+}}=1
$$

$$
e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \triangleleft \quad \text { so this works } \checkmark
$$

- but if we rewrite it $f_{i}^{\prime}=e^{\phi-W}$
works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.

Possible criticism of the O8-O8 model

$\bullet \mathrm{O} 8_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously. Let's do it anyway...

- if we extrapolate from $\mathrm{O} 8_{+}$with $a \neq 0$:

$$
\partial_{z}^{2}(\xrightarrow{\hookrightarrow})=\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow z_{0}^{+}}=1
$$

$$
e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \triangleleft \quad \text { so this works } \checkmark
$$

- but if we rewrite it $f_{i}^{\prime}=e^{\phi-W}$
works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.
At what order should we then go for full satisfaction? These are boundary conditions.

Possible criticism of the $\mathbf{O 8}-\mathbf{O 8}$ model

- $\mathrm{O} 8_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \triangleleft \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$
- Near O8_, supergravity breaks down; we shouldn't take its EoNs seriously.

Let's do it anyway...

- if we extrapolate from $\mathrm{O8}_{+}$with $a \neq 0$:

$$
\partial_{z}^{2}(\xrightarrow{\hookrightarrow})=\left.\delta \quad \triangleleft \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow z_{0}^{+}}=1
$$

$$
e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \triangleleft \quad \text { so this works } \checkmark
$$

- but if we rewrite it $f_{i}^{\prime}=e^{\phi-W}$
works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.

At what order should we then go for full satisfaction? These are boundary conditions.
To me this confirms understanding supergravity EoMs in strongly coupled region is not a meaningful enterprise.

Of course, this also confirms that the fate of our solutions depends on quantum corrections.

Possible criticism of the O8-O8 model [Longer version]

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O} 8_{+}: \quad \partial_{z}^{2}(\xrightarrow{\wedge})=-\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

O8+
O8

Possible criticism of the O8-O8 model [Longer version]

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
$\bullet \mathrm{O} 8_{+}: \quad \partial_{z}^{2}(\xrightarrow{\wedge})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$
- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway

Possible criticism of the O8-O8 model [Longer version]

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O} 8_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

O8

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway

- Not too clear: $e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \partial_{z}^{2} \log \left|z-z_{0}\right|$ discontinuity of div. function?

Possible criticism of the O8-O8 model [Longer version]

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O} 8_{+}: \quad \partial_{z}^{2}(\xrightarrow{\longrightarrow})=-\left.\delta \quad \Rightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway

- Not too clear: $e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \partial_{z}^{2} \log \left|z-z_{0}\right|$ discontinuity of div. function?
- even worse if we write it as $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \sim \frac{1}{\left|z-z_{0}\right|} \delta+\ldots$

Possible criticism of the O8-O8 model [Longer version]

- Near sources, EoMs: $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \mp \delta+\ldots \quad f_{i}=\left\{W, \frac{1}{5} \phi, \frac{1}{2} \lambda\right\}$
- $\mathrm{O} 8_{+}: \quad \partial_{z}^{2}(\xrightarrow{\wedge})=-\left.\delta \quad \Longleftrightarrow \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow 0^{+}}=-1$

O8+
O8

- Near O8_, supergravity breaks down; we shouldn't take its EoMs seriously.

Let's do it anyway

- Not too clear: $e^{W-\phi} \sim\left|z-z_{0}\right|, f_{i} \sim \log \left|z-z_{0}\right| \quad \partial_{z}^{2} \log \left|z-z_{0}\right|$: discontinuity of div. function?
- even worse if we write it as $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \sim \frac{1}{\left|z-z_{0}\right|} \delta+\ldots$
- if we extrapolate from $\mathrm{O} 8_{+}$with $a \neq 0$:

$$
\partial_{z}^{2}(\xrightarrow{\hookrightarrow})=\left.\delta \quad \triangleleft \quad e^{W-\phi} f_{i}^{\prime}\right|_{z \rightarrow z_{0}^{+}}=1
$$

this works \checkmark

- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$
this coeff. is fine confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$
this coeff. is fine
confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- Or: $e^{W-\phi} f_{i}^{\prime}=1$ works, but $f_{i}^{\prime}=e^{\phi-W}$?
works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.
- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$
there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$
and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$
this coeff. is fine
confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- Or: $e^{W-\phi} f_{i}^{\prime}=1$ works, but $f_{i}^{\prime}=e^{\phi-W}$? works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.

At what order should we then go for full satisfaction? These are boundary conditions.

- problem appears if we take linear comb. of $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots$ there is one that reads $\partial_{z}^{2}\left(f_{1}-f_{2}\right)=0 \cdot \delta+\ldots$ and we have a non-zero coeff. here.
- that's a bit like complaining that $\partial_{z}^{2} f_{i} \sim e^{\phi-W} \delta+\ldots \Rightarrow\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}\right) \delta \sim\left(\frac{1}{\left|z-z_{0}\right|}+d_{i}^{\prime}\right) \delta$ this coeff. is fine
confusing: if we write $e^{W-\phi} \partial_{z}^{2} f_{i} \sim \delta+\ldots$, it works fine \checkmark
- Or: $e^{W-\phi} f_{i}^{\prime}=1$ works, but $f_{i}^{\prime}=e^{\phi-W}$?
works at leading $\frac{1}{\left|z-z_{0}\right|}$ order, but not with subleading constant.
At what order should we then go for full satisfaction? These are boundary conditions.

To me this confirms understanding supergravity EoMs in strongly coupled region is not a meaningful enterprise.

Of course, this also confirms that the fate of our solutions depends on quantum corrections.

