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Main Theme

Conserved charges Qi generate continuous symmetries. Their
(graded) commutators define the symmetry algebra A.

I If the charges Qi annihilate the vacuum, Qi|0〉 = 0, then all
states lie in representations R of the symmetry algebra A.

I If Qi|0〉 6= 0 the symmetry is spontaneously broken.

In unitary theories R should be a unitary representation of A.

Natural questions (many examples, long history):

I When can an algebra A arise as a physical symmetry algebra?

I Which representations R of a symmetry algebra A can occur?

We will examine two examples involving supersymmetric QFTs:

I A = superconformal algebra, R = local operators

I A = extended Poincaré SUSY algebra, R = particles, strings
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Current Algebra
In QFT, we expect the generators Qi of continuous symmetries to
arise from local currents Ji(x). Like all well-defined local operators,
they should reside in a multiplet J of the symmetry algebra A.

J ⊃
{
Ji(x)

}
−→ Qi =

∫
dx Ji(x)

This talk: current algebra = action of the Qi on the operators in
the current multiplet J , e.g. QiJj(x). Integrating over x, we must
recover the charge algebra. This is a nontrivial constraint on J , A.

Some representations of A may be inconsistent with the existence
of local currents. Example [Weinberg,Witten]: If A = Poincaré
algebra, then J = Tµν is the stress tensor. There are massless
single-particle representations of A for any helicity h ∈ 1

2Z, but

〈p′, h|Tµν(q)|p, h〉 6= 0 =⇒ |h| ≤ 1 .

In the forward limit q → 0 this measures the energy of the particle
(via soft graviton scattering): must be IR finite and nonzero.
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Maximal Supersymmetry in QFT
Massless single-particle representations of {Q,Q} ∼ P violate the
Weinberg-Witten bound |h| ≤ 1 when d ≥ 4 and NQ > 16. This
leads to the standard lore that QFT requires NQ ≤ 16.

I Not true in d = 3 (no notion of helicity for massless particles),
e.g. an N = 9 free hypermultiplet exists. It has 16 free
bosons φi and 16 free Majorana fermions ψiα (so(9)R spinors).

I Does not rule out interacting SCFTs with NQ > 16 (any d).

In SCFTs A = superconformal algebra. Algebraically
consistent A’s are classified [Nahm], very restricted in d ≥ 3:

osp(N|4) su(4|N ) f(4) osp(8|N ) none
d = 3 d = 4 d = 5 d = 6 d ≥ 7

5d is exceptional (only N = 1), 6d requires chiral (N , 0) SUSY.
In d = 3, 4, 6 candidate algebras exist for every N ∈ Z≥0.
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Maximal Supersymmetry in QFT (cont.)
Not all superconformal algebras A admit a current algebra
interpretation. The required current multiplet T contains
the R-symmetry current Rijµ , the traceless SUSY current Siµα
(gives Q,S-supercharges), and the traceless stress tensor Tµν
(gives Pµ, D,Kµ). The commutation relations of A require that

(?) T ⊃ {Rijµ , S
i
µα, Tµν} , QR ∼ S , QS ∼ T , QT ∼ 0

Moreover, T must be a unitary multiplet of A.

We have developed a uniform procedure to tabulate the operator
content of any unitary superconformal multiplet [Dolan, Osborn;...].
In particular, we analyzed all multiplets with conserved currents:

I If T exists, it is essentially unique, with a single lowest weight.
I No candidate T satisfying the constraints (?) exists if d = 4, 6

and NQ > 16 (talk by [Vafa]).
I In 3d T exists for any N . If N ≥ 9, then T contains

higher-spin currents; the theory is free [Maldacena, Zhiboedov].
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Deformations of SCFTs

Our machinery also leads to a classification of all possible SUSY
deformations of SCFTs by local operators. Many applications,
e.g. universal constraints on SUSY RG-flows. Example: 4d N = 2
SCFTs [Argyres et. al.], SU(2)R × U(1)r symmetry (r(Qiα) = −1).

Only two kinds of Lorentz-scalar relevant or marginal deformations:

I A flavor current resides in a real multiplet J (ij) such that

Q(i
αJ

jk) = Q
(i

β̇
J jk) = 0 , ∆J = 2 , σµ

αβ̇
jµ ∼ Q

i
αQ

j

β̇
Jij .

∆L = (Q2)ijJij preserves SUSY, SU(2)R, breaks U(1)r.

I Chiral operators satisfy Q
i
α̇O = 0 and ∆O = r > 1.

∆L = Q4O preserves SUSY, SU(2)R, typically breaks U(1)r.

The upshot is that all deformed SCFTs have an SU(2)R symmetry,
but generically not U(1)r (the same conclusion applies to gauging).
If there is a Coulomb branch, then SU(2)R is unbroken there.
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Non-Conformal 4d N = 2 Theories

Now A = Poincaré SUSY algebraoSU(2)R. It can be extended
by p-form charges carried by p-brane excitations:

{Qiα, Qjβ̇} = 2σµ
αβ̇

(
δijPµ + (Xµ)i

j

)
,

{Qiα, Q
j
β} = 2σµναβY

(ij)
[µν] + 2εαβε

ijZ ,

[R(ij), Qkα] = −εk(iQj)α

The charged states are strings for (Xµ)i
j
, domain walls for Y

(ij)
[µν] ,

and particles for Z. Unitarity, with
(
Qiα

)†
= Qiα̇, implies a BPS

bound for their mass (or tension):

Mstring ≥ |X| , Mdomain wall ≥ |Y | , Mparticle ≥ |Z| .
When this bound is saturated, we can get BPS strings, domain
walls, or particles. Which of these excitations can arise in N = 2
QFTs, and what can we say about their quantum numbers?
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N = 2 Stress-Tensor Multiplets

The current multiplet T that gives rise to the SUSY algebra A is
again the stress-tensor multiplet. All charges arise from currents:

(?) T ⊃
{
R(ij)
µ , Siµα, Tµν , (x[µν])

i

j
, (y[µνρ])

(ij), zµ
}

Now Tµν , Sµα are not traceless. The charge algebra A fixes

(†) QS ∼ T + x , QS ∼ y + z , Q (T, x, y, z) ∼ 0 , QR ∼ S

Qualitative differences with the stress-tensor multiplet in SCFTs:
I A may admit distinct representations satisfying (?), (†).
I A given theory may have two (or more) multiplets T ,T ′.

Then Tµν , T ′µν and Siµα, S′iµα differ by improvement terms.
I The other currents in T , T ′ need not differ by improvements.

Example: R(ij)
µ can mix with an SU(2) flavor current.

A complete list of possible N = 2 stress-tensor multiplets is not
available, but we know several examples. Is there a preferred one?
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The Sohnius Stress-Tensor Multiplet
Nearly all non-conformal N = 2 theories with SU(2)R symmetry
seem to admit a stress-tensor multiplet T introduced by [Sohnius]:

(T )† = T , εαβQ(i
αQ

j)
β T = Z(ij) , Q(i

αZ
jk) = Q

(i
α̇Z

jk) = 0 .

I Z(ij) is a complex flavor current multiplet that contains zµ.
When it vanishes, we recover the superconformal multiplet.

I An N = 2 version of the N = 1 multiplet [Ferrara, Zumino].

T → ψiα → Z(ij),W[µν], R
(ij)
µ , rµ → Siµα, χ

i
α → Tµν , zµ, C

I W[µν], rµ are not conserved. SCFT: rµ = U(1)r current.

I There are no genuine currents (x[µν])
i

j
or y

(ij)
[µνρ]. Hence there

are no BPS strings or domain walls.
I Consistent with N = 1 [TD, Seiberg]: no BPS strings with an

[FZ]-multiplet, no BPS domain walls with an R-symmetry.
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BPS Particles in 4d N = 2 Theories
Typically studied on Coulomb branch, where SU(2)R is unbroken.

{Qiα, S
j
µβ} = 2εijεαβ

(
zµ + ∂νW+

[µν]

)
, W+

[µν] ∼ F
+
[µν] [Witten, Olive]

Pick a vacuum and charge sector. Then Z ∈ C is fixed and can be
aligned with R: particles have Z > 0, antiparticles have Z < 0.
In the rest frame Pµ = (M,0), little group is SU(2)J × SU(2)R.

A(±)i
α = Qiα ± σ

0
αβ̇Q

iβ̇
,

(
A(±)i
α

)†
= ±A(±)α

i{
A(±)i
α , A

(∓)j
β

}
= 0 ,

{
A(±)i
α , A

(±)j
β

}
= 4εijεαβ (Z ±M)

I BPS particles satisfy M = Z > 0, and hence A(−) = 0. Four

states in a half hypermultiplet: | ↑ 〉 A
(+)

←→ |i = 1, 2〉 A
(+)

←→ | ↓ 〉.
I Anti-BPS particles: M = −Z > 0, roles of A(±) are reversed.
I Long multiplets: M > |Z|, A(±) 6= 0. This leads to 16 states.
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The NEC and its Consequences
More generally, we can tensor the half hypermultiplet with any
representation (j; r) of the SU(2)J × SU(2)R little group:

| ↑ ;m = −j, . . . , j , s = −r, . . . , r〉 A
(+)

←→ |i = 1, 2 ; m, s〉 A
(+)

←→ | ↓ ; m, s〉
I Multiplets with j 6= 0 occur, e.g. (j = 1

2 ; r = 0) is a W-boson.
I Empirically, multiplets with r 6= 0 do not seem to occur in

QFT. This was formalized in the no-exotics conjecture (NEC)
of [Gaiotto, Moore, Neitzke]. Putative multiplets with r 6= 0 are
called exotic. Further work by [Diaconescu et.al.; del Zotto, Sen].

The conjecture has implications for physics and mathematics:
I Long multiplets cannot hit the BPS bound and decay into

short ones, because some fragments would have to be exotic.
I Protected indices, which count BPS states with signs, actually

coincide with the physical degeneracies (cf. BH microstates).
I Implies constraints on the cohomology of moduli spaces that

arise in counting BPS states [Moore, Royston, van Den Bleeken].
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Flavor Symmetries and Mixing
In the presence of an SU(2)flavor symmetry, the SU(2)R symmetry

is not unique: S̃U(2)R = SU(2)R×SU(2)flavor

∣∣
diag

is just as good.

Example: massless hypermultiplet qi,a, ψaα. Here i an R-symmetry
doublet index, and a is a flavor doublet index.

Mixing: i→ ĩ, a→ j̃, where ĩ, j̃ are S̃U(2)R doublet indices.

Therefore the hypermultiplet is exotic with respect to S̃U(2)R.

I The presence of SU(2)flavor renders the NEC ambiguous.

I We would like to state the NEC with respect to SU(2)R. How
do we distinguish it in a model-independent way?

While the two R-symmetries are indistinguishable at the level of
charges, they arise from different current algebras. The
current R(ij)

µ resides in the Sohnius stress-tensor multiplet,

while R̃(ij)
µ resides in a structurally different, less familiar multiplet.
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Current-Algebra Proof of the NEC

Goal: prove the NEC with respect to the SU(2)R current R(ij)
µ in

the Sohnius multiplet. We will examine its forward matrix elements
between BPS states, where it measures the charges R(ij). For now,
we assume that all forward limits exist, postponing a small subtlety.

Argue by contradiction: consider
〈
↑ ; s

∣∣R22
0

∣∣ ↑ ; s′
〉
. If r 6= 0

(exotic), choose s = r − 1, s′ = r to get a nonzero matrix element
for the lowering operator R22. Claim: in fact, it actually vanishes.

Sohnius multiplet: R22
0 ∼ QQT . BPS state: A(−) ∼ Q−Q = 0.

We can move the Q’s around to derive a Ward identity:〈
↑ ; r − 1

∣∣R22
0

∣∣ ↑ ; r
〉

= −2M
〈
1; r − 1

∣∣ T ∣∣2; r
〉

There are many other such Ward identities (interesting), but they
are not sufficient to show that the matrix element vanishes.
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Current-Algebra Proof of the NEC (cont.)
Extra tool: the Θ = CPT symmetry of relativistic QFT.

Since Θ2 = (−1)F , the SUSY algebra determines (up to a sign)

ΘQiαΘ−1 = iQiα̇ , θZθ−1 = −Z .

This fixes the Θ-transformations of all Sohnius multiplet operators.

〈
↑ ; r − 1

∣∣R22
0

∣∣ ↑ ; r
〉 Ward ID

BPS

ΘR
22
0 Θ

−1
=R

11
0

��

−2M
〈
1; r − 1

∣∣ T ∣∣2; r
〉

ΘT Θ
−1

=T

��
+Θ〈 ↑ ; r − 1

∣∣R11
0

∣∣ ↑ ; r
〉Θ

=

= −Θ〈 ↑ ; r − 1
∣∣R11

0

∣∣ ↑ ; r
〉Θ

Ward ID

anti-BPS
−2M Θ〈1; r − 1

∣∣ T ∣∣2; r
〉Θ

Subtlety: forward matrix elements of T are divergent, due to soft
single-photon exchange. This IR effect can be computed exactly

and subtracted: Z(ij) → Z(ij)
eff (E&M boundary terms in Z) .
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and subtracted: Z(ij) → Z(ij)
eff (E&M boundary terms in Z) .
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Current-Algebra Proof of the NEC (cont.)
Extra tool: the Θ = CPT symmetry of relativistic QFT.
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Conclusions and Extensions
I General lesson (not new): in QFT, current algebra can exclude

phenomena that are allowed at the level of the charge algebra.
I Two examples:

I SCFTs with NQ > 16 in d ≥ 3 (in d = 3, interacting SCFTs).
I Exotic BPS states in 4d N = 2 theories [GMN]

I The argument against exotics did not require a UV-complete
theory. Consider a 5d N = 1 QFT with a Sohnius multiplet,
compactified on S1. Some 4d BPS states come from BPS
strings wrapping S1, so the strings cannot carry R-charge.

I The discussion can be repeated for BPS particles in 5d N = 1
theories and BPS strings in 6d (1, 0) theories. There is also a
3d version (richer due to SU(2)R × SU(2)′R symmetry).

I It would be interesting to extend the argument to framed BPS
states, which are bound to a BPS defect.

Thank You for Your Attention!

14



Conclusions and Extensions
I General lesson (not new): in QFT, current algebra can exclude

phenomena that are allowed at the level of the charge algebra.
I Two examples:

I SCFTs with NQ > 16 in d ≥ 3 (in d = 3, interacting SCFTs).
I Exotic BPS states in 4d N = 2 theories [GMN]

I The argument against exotics did not require a UV-complete
theory. Consider a 5d N = 1 QFT with a Sohnius multiplet,
compactified on S1. Some 4d BPS states come from BPS
strings wrapping S1, so the strings cannot carry R-charge.

I The discussion can be repeated for BPS particles in 5d N = 1
theories and BPS strings in 6d (1, 0) theories. There is also a
3d version (richer due to SU(2)R × SU(2)′R symmetry).

I It would be interesting to extend the argument to framed BPS
states, which are bound to a BPS defect.

Thank You for Your Attention!
14


