Current Algebra Constraints on Supersymmetric Quantum Field Theories

Thomas Dumitrescu

Harvard University

arXiv:1602.01217, 1608.xxxx with C. Córdova, K. Intriligator and work in progress with C. Córdova

Strings 2016 - Tsinghua University, Beijing, China

Main Theme

Conserved charges Q_i generate continuous symmetries. Their (graded) commutators define the symmetry algebra A.

- If the charges Q_i annihilate the vacuum, Q_i|0⟩ = 0, then all states lie in representations R of the symmetry algebra A.
- If $Q_i |0\rangle \neq 0$ the symmetry is spontaneously broken.

In unitary theories \mathcal{R} should be a unitary representation of \mathcal{A} .

Natural questions (many examples, long history):

- ▶ When can an algebra *A* arise as a physical symmetry algebra?
- Which representations \mathcal{R} of a symmetry algebra \mathcal{A} can occur?

We will examine two examples involving supersymmetric QFTs:

- $\mathcal{A} =$ superconformal algebra, $\mathcal{R} =$ local operators
- $\mathcal{A} = \text{extended Poincaré SUSY algebra}$, $\mathcal{R} = \text{particles}$, strings

Current Algebra

In QFT, we expect the generators Q_i of continuous symmetries to arise from local currents $J_i(x)$. Like all well-defined local operators, they should reside in a multiplet \mathcal{J} of the symmetry algebra \mathcal{A} .

$$\mathcal{J} \supset \left\{ J_i(x) \right\} \quad \longrightarrow \quad \mathcal{Q}_i = \int dx \, J_i(x)$$

This talk: current algebra = action of the Q_i on the operators in the current multiplet \mathcal{J} , e.g. $Q_i J_j(x)$. Integrating over x, we must recover the charge algebra. This is a nontrivial constraint on \mathcal{J} , \mathcal{A} .

Current Algebra

In QFT, we expect the generators Q_i of continuous symmetries to arise from local currents $J_i(x)$. Like all well-defined local operators, they should reside in a multiplet \mathcal{J} of the symmetry algebra \mathcal{A} .

$$\mathcal{J} \supset \left\{ J_i(x) \right\} \quad \longrightarrow \quad \mathcal{Q}_i = \int dx \, J_i(x)$$

This talk: current algebra = action of the Q_i on the operators in the current multiplet \mathcal{J} , e.g. $Q_i J_j(x)$. Integrating over x, we must recover the charge algebra. This is a nontrivial constraint on \mathcal{J} , \mathcal{A} . Some representations of \mathcal{A} may be inconsistent with the existence of local currents. Example [Weinberg,Witten]: If $\mathcal{A} = \text{Poincaré}$ algebra, then $\mathcal{J} = T_{\mu\nu}$ is the stress tensor. There are massless single-particle representations of \mathcal{A} for any helicity $h \in \frac{1}{2}\mathbb{Z}$, but

$$\langle p', h | T_{\mu\nu}(q) | p, h \rangle \neq 0 \qquad \Longrightarrow \qquad |h| \le 1 \; .$$

In the forward limit $q \rightarrow 0$ this measures the energy of the particle (via soft graviton scattering): must be IR finite and nonzero.

Maximal Supersymmetry in QFT

Massless single-particle representations of $\{Q, Q\} \sim P$ violate the Weinberg-Witten bound $|h| \leq 1$ when $d \geq 4$ and $N_Q > 16$. This leads to the standard lore that QFT requires $N_Q \leq 16$.

Maximal Supersymmetry in QFT

Massless single-particle representations of $\{Q, Q\} \sim P$ violate the Weinberg-Witten bound $|h| \leq 1$ when $d \geq 4$ and $N_Q > 16$. This leads to the standard lore that QFT requires $N_Q \leq 16$.

- Not true in d = 3 (no notion of helicity for massless particles), e.g. an N = 9 free hypermultiplet exists. It has 16 free bosons φⁱ and 16 free Majorana fermions ψⁱ_α (so(9)_R spinors).
- Does not rule out interacting SCFTs with $N_Q > 16$ (any d).

Maximal Supersymmetry in QFT

Massless single-particle representations of $\{Q, Q\} \sim P$ violate the Weinberg-Witten bound $|h| \leq 1$ when $d \geq 4$ and $N_Q > 16$. This leads to the standard lore that QFT requires $N_Q \leq 16$.

- Not true in d = 3 (no notion of helicity for massless particles), e.g. an N = 9 free hypermultiplet exists. It has 16 free bosons φⁱ and 16 free Majorana fermions ψⁱ_α (so(9)_R spinors).
- ▶ Does not rule out interacting SCFTs with $N_Q > 16$ (any d).

In SCFTs \mathcal{A} = superconformal algebra. Algebraically consistent \mathcal{A} 's are classified [Nahm], very restricted in $d \ge 3$:

 $\begin{array}{lll} \mathfrak{osp}(\mathcal{N}|4) & \mathfrak{su}(4|\mathcal{N}) & \mathfrak{f}(4) & \mathfrak{osp}(8|\mathcal{N}) & \text{none} \\ d=3 & d=4 & d=5 & d=6 & d\geq7 \end{array}$

5d is exceptional (only $\mathcal{N} = 1$), 6d requires chiral $(\mathcal{N}, 0)$ SUSY. In d = 3, 4, 6 candidate algebras exist for every $\mathcal{N} \in \mathbb{Z}_{>0}$. **Maximal Supersymmetry in QFT (cont.)** Not all superconformal algebras \mathcal{A} admit a current algebra interpretation. The required current multiplet \mathcal{T} contains the *R*-symmetry current R_{μ}^{ij} , the traceless SUSY current $S_{\mu\alpha}^{i}$ (gives Q, S-supercharges), and the traceless stress tensor $T_{\mu\nu}$ (gives P_{μ}, D, K_{μ}). The commutation relations of \mathcal{A} require that $(\star) \quad \mathcal{T} \supset \{R_{\mu}^{ij}, S_{\mu\alpha}^{i}, T_{\mu\nu}\}, \quad QR \sim S, \ QS \sim T, \ QT \sim 0$ Moreover, \mathcal{T} must be a unitary multiplet of \mathcal{A} . **Maximal Supersymmetry in QFT (cont.)** Not all superconformal algebras \mathcal{A} admit a current algebra interpretation. The required current multiplet \mathcal{T} contains the *R*-symmetry current R^{ij}_{μ} , the traceless SUSY current $S^{i}_{\mu\alpha}$ (gives Q, S-supercharges), and the traceless stress tensor $T_{\mu\nu}$ (gives P_{μ}, D, K_{μ}). The commutation relations of \mathcal{A} require that

 $(\star) \quad \mathcal{T} \supset \{R^{ij}_{\mu}, S^i_{\mu\alpha}, T_{\mu\nu}\} \ , \quad QR \sim S \ , \ QS \sim T \ , \ QT \sim 0$

Moreover, \mathcal{T} must be a unitary multiplet of \mathcal{A} .

We have developed a uniform procedure to tabulate the operator content of any unitary superconformal multiplet [Dolan, Osborn;...]. In particular, we analyzed all multiplets with conserved currents:

- If \mathcal{T} exists, it is essentially unique, with a single lowest weight.
- ► No candidate *T* satisfying the constraints (*) exists if *d* = 4, 6 and N_Q > 16 (talk by [Vafa]).
- In 3d T exists for any N. If N ≥ 9, then T contains higher-spin currents; the theory is free [Maldacena, Zhiboedov].

Deformations of SCFTs

Our machinery also leads to a classification of all possible SUSY deformations of SCFTs by local operators. Many applications, e.g. universal constraints on SUSY RG-flows. Example: 4d $\mathcal{N} = 2$ SCFTs [Argyres et. al.], $SU(2)_R \times U(1)_r$ symmetry $(r(Q^i_\alpha) = -1)$.

Deformations of SCFTs

Our machinery also leads to a classification of all possible SUSY deformations of SCFTs by local operators. Many applications, e.g. universal constraints on SUSY RG-flows. Example: 4d $\mathcal{N} = 2$ SCFTs [Argyres et. al.], $SU(2)_R \times U(1)_r$ symmetry $(r(Q^i_\alpha) = -1)$. Only two kinds of Lorentz-scalar relevant or marginal deformations:

- A flavor current resides in a real multiplet $\mathcal{J}^{(ij)}$ such that

$$Q^{(i}_{\alpha}\mathcal{J}^{jk)} = \overline{Q}^{(i}_{\dot{\beta}}\mathcal{J}^{jk)} = 0 , \quad \Delta_{\mathcal{J}} = 2 , \quad \sigma^{\mu}_{\alpha\dot{\beta}}j_{\mu} \sim Q^{i}_{\alpha}\overline{Q}^{j}_{\dot{\beta}}\mathcal{J}_{ij} .$$

 $\Delta \mathscr{L} = (Q^2)^{ij} \mathcal{J}_{ij} \text{ preserves SUSY, } SU(2)_R \text{, breaks } U(1)_r.$

• Chiral operators satisfy $\overline{Q}^i_{\dot{\alpha}}\mathcal{O} = 0$ and $\Delta_{\mathcal{O}} = r > 1$. $\Delta \mathscr{L} = Q^4 \mathcal{O}$ preserves SUSY, $SU(2)_R$, typically breaks $U(1)_r$.

The upshot is that all deformed SCFTs have an $SU(2)_R$ symmetry, but generically not $U(1)_r$ (the same conclusion applies to gauging). If there is a Coulomb branch, then $SU(2)_R$ is unbroken there.

Non-Conformal 4d $\mathcal{N} = 2$ Theories

Now $\mathcal{A} = \text{Poincaré SUSY algebra} \rtimes SU(2)_R$. It can be extended by *p*-form charges carried by *p*-brane excitations:

$$\begin{split} \{Q^{i}_{\alpha}, \overline{Q}_{j\dot{\beta}}\} &= 2\sigma^{\mu}_{\alpha\dot{\beta}} \left(\delta^{i}{}_{j}P_{\mu} + \left(X_{\mu}\right)^{i}{}_{j}\right) ,\\ \{Q^{i}_{\alpha}, Q^{j}_{\beta}\} &= 2\sigma^{\mu\nu}_{\alpha\beta}Y^{(ij)}_{[\mu\nu]} + 2\varepsilon_{\alpha\beta}\varepsilon^{ij}Z ,\\ [R^{(ij)}, Q^{k}_{\alpha}] &= -\varepsilon^{k(i}Q^{j)}_{\alpha} \end{split}$$

The charged states are strings for $(X_{\mu})_{j}^{i}$, domain walls for $Y_{[\mu\nu]}^{(ij)}$, and particles for Z. Unitarity, with $(Q_{\alpha}^{i})^{\dagger} = \overline{Q}_{i\dot{\alpha}}$, implies a BPS bound for their mass (or tension):

 $M_{
m string} \geq |X|$, $M_{
m domain\ wall} \geq |Y|$, $M_{
m particle} \geq |Z|$. When this bound is saturated, we can get BPS strings, domain walls, or particles. Which of these excitations can arise in $\mathcal{N} = 2$ QFTs, and what can we say about their quantum numbers?

$\mathcal{N} = 2$ Stress-Tensor Multiplets

The current multiplet \mathcal{T} that gives rise to the SUSY algebra \mathcal{A} is again the stress-tensor multiplet. All charges arise from currents:

$$(\star) \qquad \mathcal{T} \supset \left\{ R^{(ij)}_{\mu}, S^{i}_{\mu\alpha}, T_{\mu\nu}, (x_{[\mu\nu]})^{i}_{\ j}, (y_{[\mu\nu\rho]})^{(ij)}, z_{\mu} \right\}$$

Now $T_{\mu\nu}$, $S_{\mu\alpha}$ are not traceless. The charge algebra \mathcal{A} fixes

(†) $\overline{Q}S \sim T + x$, $QS \sim y + z$, $Q(T, x, y, z) \sim 0$, $QR \sim S$

$\mathcal{N} = 2$ Stress-Tensor Multiplets

The current multiplet \mathcal{T} that gives rise to the SUSY algebra \mathcal{A} is again the stress-tensor multiplet. All charges arise from currents:

$$(\star) \qquad \mathcal{T} \supset \left\{ R^{(ij)}_{\mu}, S^{i}_{\mu\alpha}, T_{\mu\nu}, (x_{[\mu\nu]})^{i}_{\ j}, (y_{[\mu\nu\rho]})^{(ij)}, z_{\mu} \right\}$$

Now $T_{\mu\nu}$, $S_{\mu\alpha}$ are not traceless. The charge algebra \mathcal{A} fixes (†) $\overline{Q}S \sim T + x$, $QS \sim y + z$, $Q(T, x, y, z) \sim 0$, $QR \sim S$

Qualitative differences with the stress-tensor multiplet in SCFTs:

- \mathcal{A} may admit distinct representations satisfying (*), (†).
- A given theory may have two (or more) multiplets $\mathcal{T}, \mathcal{T}'$. Then $T_{\mu\nu}, T'_{\mu\nu}$ and $S^i_{\mu\alpha}, S'^i_{\mu\alpha}$ differ by improvement terms.
- ► The other currents in *T*, *T'* need not differ by improvements. Example: R^(ij)_µ can mix with an SU(2) flavor current.
 A complete list of possible *N* = 2 stress-tensor multiplets is not available, but we know several examples. Is there a preferred one?

The Sohnius Stress-Tensor Multiplet

Nearly all non-conformal $\mathcal{N} = 2$ theories with $SU(2)_R$ symmetry seem to admit a stress-tensor multiplet \mathcal{T} introduced by [Sohnius]:

$$(\mathcal{T})^{\dagger} = \mathcal{T} , \quad \varepsilon^{lphaeta} Q^{(i}_{lpha} Q^{j)}_{eta} \mathcal{T} = \mathcal{Z}^{(ij)} , \quad Q^{(i}_{lpha} \mathcal{Z}^{jk)} = \overline{Q}^{(i}_{\dot{lpha}} \mathcal{Z}^{jk)} = 0 .$$

- Z^(ij) is a complex flavor current multiplet that contains z_μ.
 When it vanishes, we recover the superconformal multiplet.
- An $\mathcal{N} = 2$ version of the $\mathcal{N} = 1$ multiplet [Ferrara, Zumino].

The Sohnius Stress-Tensor Multiplet

Nearly all non-conformal $\mathcal{N} = 2$ theories with $SU(2)_R$ symmetry seem to admit a stress-tensor multiplet \mathcal{T} introduced by [Sohnius]:

$$(\mathcal{T})^{\dagger} = \mathcal{T} \;, \quad \varepsilon^{lphaeta} Q^{(i}_{lpha} Q^{j)}_{eta} \mathcal{T} = \mathcal{Z}^{(ij)} \;, \quad Q^{(i}_{lpha} \mathcal{Z}^{jk)} = \overline{Q}^{(i}_{\dot{lpha}} \mathcal{Z}^{jk)} = 0 \;.$$

- Z^(ij) is a complex flavor current multiplet that contains z_μ.
 When it vanishes, we recover the superconformal multiplet.
- An $\mathcal{N} = 2$ version of the $\mathcal{N} = 1$ multiplet [Ferrara, Zumino].

 $\mathcal{T} \rightarrow \psi^i_{\alpha} \rightarrow \mathcal{Z}^{(ij)}, W_{[\mu\nu]}, R^{(ij)}_{\mu}, r_{\mu} \rightarrow S^i_{\mu\alpha}, \chi^i_{\alpha} \rightarrow T_{\mu\nu}, z_{\mu}, C$

- ► $W_{[\mu\nu]}$, r_{μ} are not conserved. SCFT: $r_{\mu} = U(1)_r$ current.
- There are no genuine currents (x_[μν])ⁱ_j or y^(ij)_[μνρ]. Hence there are no BPS strings or domain walls.
- ► Consistent with N = 1 [TD, Seiberg]: no BPS strings with an [FZ]-multiplet, no BPS domain walls with an R-symmetry.

BPS Particles in 4d $\mathcal{N} = 2$ Theories

Typically studied on Coulomb branch, where $SU(2)_R$ is unbroken.

$$\{Q^{i}_{\alpha}, S^{j}_{\mu\beta}\} = 2\varepsilon^{ij}\varepsilon_{\alpha\beta}\left(z_{\mu} + \partial^{\nu}W^{+}_{[\mu\nu]}\right) , W^{+}_{[\mu\nu]} \sim F^{+}_{[\mu\nu]} \quad [\text{Witten, Olive}]$$

Pick a vacuum and charge sector. Then $Z \in \mathbb{C}$ is fixed and can be aligned with \mathbb{R} : particles have Z > 0, antiparticles have Z < 0. In the rest frame $P^{\mu} = (M, \mathbf{0})$, little group is $SU(2)_J \times SU(2)_R$.

$$\begin{aligned} A^{(\pm)i}_{\alpha} &= Q^{i}_{\alpha} \pm \sigma^{0}_{\alpha\dot{\beta}} \overline{Q}^{i\dot{\beta}} , \qquad \left(A^{(\pm)i}_{\alpha} \right)^{\dagger} = \pm A^{(\pm)\alpha}_{i} \\ \left\{ A^{(\pm)i}_{\alpha}, A^{(\mp)j}_{\beta} \right\} &= 0 , \qquad \left\{ A^{(\pm)i}_{\alpha}, A^{(\pm)j}_{\beta} \right\} = 4\varepsilon^{ij} \varepsilon_{\alpha\beta} \left(Z \pm M \right) \end{aligned}$$

▶ BPS particles satisfy M = Z > 0, and hence $A^{(-)} = 0$. Four states in a half hypermultiplet: $|\uparrow\rangle \stackrel{A^{(+)}}{\longleftrightarrow} |i = 1, 2\rangle \stackrel{A^{(+)}}{\longleftrightarrow} |\downarrow\rangle$.

• Anti-BPS particles: M = -Z > 0, roles of $A^{(\pm)}$ are reversed.

• Long multiplets: M > |Z|, $A^{(\pm)} \neq 0$. This leads to 16 states.

The NEC and its Consequences

More generally, we can tensor the half hypermultiplet with any representation (j;r) of the $SU(2)_J \times SU(2)_R$ little group:

$$\uparrow; m = -j, \dots, j , \ s = -r, \dots, r \rangle \stackrel{A^{(+)}}{\longleftrightarrow} |i = 1, 2; \ m, s \rangle \stackrel{A^{(+)}}{\longleftrightarrow} |\downarrow; m, s \rangle$$

- Multiplets with $j \neq 0$ occur, e.g. $(j = \frac{1}{2}; r = 0)$ is a W-boson.
- Empirically, multiplets with r ≠ 0 do not seem to occur in QFT. This was formalized in the no-exotics conjecture (NEC) of [Gaiotto, Moore, Neitzke]. Putative multiplets with r ≠ 0 are called exotic. Further work by [Diaconescu et.al.; del Zotto, Sen].

The NEC and its Consequences

More generally, we can tensor the half hypermultiplet with any representation (j;r) of the $SU(2)_J \times SU(2)_R$ little group:

$$\uparrow; m = -j, \dots, j, \ s = -r, \dots, r \rangle \stackrel{A^{(+)}}{\longleftrightarrow} |i = 1, 2; \ m, s \rangle \stackrel{A^{(+)}}{\longleftrightarrow} |\downarrow; m, s \rangle$$

- Multiplets with $j \neq 0$ occur, e.g. $(j = \frac{1}{2}; r = 0)$ is a W-boson.
- ► Empirically, multiplets with r ≠ 0 do not seem to occur in QFT. This was formalized in the no-exotics conjecture (NEC) of [Gaiotto, Moore, Neitzke]. Putative multiplets with r ≠ 0 are called exotic. Further work by [Diaconescu et.al.; del Zotto, Sen].

The conjecture has implications for physics and mathematics:

- Long multiplets cannot hit the BPS bound and decay into short ones, because some fragments would have to be exotic.
- Protected indices, which count BPS states with signs, actually coincide with the physical degeneracies (cf. BH microstates).
- Implies constraints on the cohomology of moduli spaces that arise in counting BPS states [Moore, Royston, van Den Bleeken].

Flavor Symmetries and Mixing

In the presence of an $SU(2)_{\text{flavor}}$ symmetry, the $SU(2)_R$ symmetry is not unique: $\widetilde{SU}(2)_R = SU(2)_R \times SU(2)_{\text{flavor}} \Big|_{\text{diag}}$ is just as good.

Example: massless hypermultiplet $q^{i,a}, \psi^a_{\alpha}$. Here *i* an *R*-symmetry doublet index, and *a* is a flavor doublet index.

Flavor Symmetries and Mixing

In the presence of an $SU(2)_{\text{flavor}}$ symmetry, the $SU(2)_R$ symmetry is not unique: $\widetilde{SU}(2)_R = SU(2)_R \times SU(2)_{\text{flavor}} \Big|_{\text{diag}}$ is just as good.

Example: massless hypermultiplet $q^{i,a}, \psi^a_{\alpha}$. Here *i* an *R*-symmetry doublet index, and *a* is a flavor doublet index.

Mixing: $i \to \tilde{i}, a \to \tilde{j}$, where \tilde{i}, \tilde{j} are $\widetilde{SU}(2)_R$ doublet indices.

Therefore the hypermultiplet is exotic with respect to $SU(2)_R$.

- ▶ The presence of $SU(2)_{\text{flavor}}$ renders the NEC ambiguous.
- ► We would like to state the NEC with respect to SU(2)_R. How do we distinguish it in a model-independent way?

Flavor Symmetries and Mixing

In the presence of an $SU(2)_{\text{flavor}}$ symmetry, the $SU(2)_R$ symmetry is not unique: $\widetilde{SU}(2)_R = SU(2)_R \times SU(2)_{\text{flavor}} \Big|_{\text{diag}}$ is just as good.

Example: massless hypermultiplet $q^{i,a}, \psi^a_{\alpha}$. Here i an R-symmetry doublet index, and a is a flavor doublet index.

Mixing: $i \to \tilde{i}, a \to \tilde{j}$, where \tilde{i}, \tilde{j} are $\widetilde{SU}(2)_R$ doublet indices. Therefore the hypermultiplet is exotic with respect to $\widetilde{SU}(2)_R$.

- The presence of $SU(2)_{\text{flavor}}$ renders the NEC ambiguous.
- ► We would like to state the NEC with respect to SU(2)_R. How do we distinguish it in a model-independent way?

While the two R-symmetries are indistinguishable at the level of charges, they arise from different current algebras. The current $R_{\mu}^{(ij)}$ resides in the Sohnius stress-tensor multiplet, while $\widetilde{R}_{\mu}^{(ij)}$ resides in a structurally different, less familiar multiplet.

Current-Algebra Proof of the NEC

Goal: prove the NEC with respect to the $SU(2)_R$ current $R_{\mu}^{(ij)}$ in the Sohnius multiplet. We will examine its forward matrix elements between BPS states, where it measures the charges $R^{(ij)}$. For now, we assume that all forward limits exist, postponing a small subtlety.

Current-Algebra Proof of the NEC

Goal: prove the NEC with respect to the $SU(2)_R$ current $R_{\mu}^{(ij)}$ in the Sohnius multiplet. We will examine its forward matrix elements between BPS states, where it measures the charges $R^{(ij)}$. For now, we assume that all forward limits exist, postponing a small subtlety.

Argue by contradiction: consider $\langle \uparrow; s | R_0^{22} | \uparrow; s' \rangle$. If $r \neq 0$ (exotic), choose s = r - 1, s' = r to get a nonzero matrix element for the lowering operator R^{22} . Claim: in fact, it actually vanishes.

Current-Algebra Proof of the NEC

Goal: prove the NEC with respect to the $SU(2)_R$ current $R_{\mu}^{(ij)}$ in the Sohnius multiplet. We will examine its forward matrix elements between BPS states, where it measures the charges $R^{(ij)}$. For now, we assume that all forward limits exist, postponing a small subtlety.

Argue by contradiction: consider $\langle \uparrow; s \mid R_0^{22} \mid \uparrow; s' \rangle$. If $r \neq 0$ (exotic), choose s = r - 1, s' = r to get a nonzero matrix element for the lowering operator R^{22} . Claim: in fact, it actually vanishes. Sohnius multiplet: $R_0^{22} \sim Q\overline{Q}T$. BPS state: $A^{(-)} \sim Q - \overline{Q} = 0$. We can move the Q's around to derive a Ward identity:

$$\left\langle \uparrow; r-1 \right| \mathbb{R}_{0}^{22} \left| \uparrow; r \right\rangle = -2M \left\langle 1; r-1 \right| \mathcal{T} \left| 2; r \right\rangle$$

There are many other such Ward identities (interesting), but they are not sufficient to show that the matrix element vanishes.

Current-Algebra Proof of the NEC (cont.)

Extra tool: the $\Theta = \text{CPT}$ symmetry of relativistic QFT. Since $\Theta^2 = (-1)^F$, the SUSY algebra determines (up to a sign) $\Theta Q^i_{\alpha} \Theta^{-1} = i \overline{Q}_{i\dot{\alpha}}$, $\theta Z \theta^{-1} = -\overline{Z}$.

This fixes the Θ -transformations of all Sohnius multiplet operators.

Current-Algebra Proof of the NEC (cont.)

Extra tool: the $\Theta = \text{CPT}$ symmetry of relativistic QFT. Since $\Theta^2 = (-1)^F$, the SUSY algebra determines (up to a sign) $\Theta Q^i_{\alpha} \Theta^{-1} = i \overline{Q}_{i\dot{\alpha}}$, $\theta Z \theta^{-1} = -\overline{Z}$.

This fixes the Θ -transformations of all Sohnius multiplet operators.

Current-Algebra Proof of the NEC (cont.)

Extra tool: the $\Theta = \text{CPT}$ symmetry of relativistic QFT. Since $\Theta^2 = (-1)^F$, the SUSY algebra determines (up to a sign) $\Theta Q^i_{\alpha} \Theta^{-1} = i \overline{Q}_{i\dot{\alpha}}$, $\theta Z \theta^{-1} = -\overline{Z}$.

This fixes the Θ -transformations of all Sohnius multiplet operators.

Subtlety: forward matrix elements of \mathcal{T} are divergent, due to soft single-photon exchange. This IR effect can be computed exactly and subtracted: $\mathcal{Z}^{(ij)} \rightarrow \mathcal{Z}^{(ij)}_{\text{eff}}$ (E&M boundary terms in Z).

Conclusions and Extensions

- General lesson (not new): in QFT, current algebra can exclude phenomena that are allowed at the level of the charge algebra.
- Two examples:
 - SCFTs with $N_Q > 16$ in $d \ge 3$ (in d = 3, interacting SCFTs).
 - Exotic BPS states in 4d $\mathcal{N} = 2$ theories [GMN]
- ► The argument against exotics did not require a UV-complete theory. Consider a 5d N = 1 QFT with a Sohnius multiplet, compactified on S¹. Some 4d BPS states come from BPS strings wrapping S¹, so the strings cannot carry R-charge.
- ▶ The discussion can be repeated for BPS particles in 5d $\mathcal{N} = 1$ theories and BPS strings in 6d (1,0) theories. There is also a 3d version (richer due to $SU(2)_R \times SU(2)'_R$ symmetry).
- It would be interesting to extend the argument to framed BPS states, which are bound to a BPS defect.

Conclusions and Extensions

- General lesson (not new): in QFT, current algebra can exclude phenomena that are allowed at the level of the charge algebra.
- Two examples:
 - SCFTs with $N_Q > 16$ in $d \ge 3$ (in d = 3, interacting SCFTs).
 - Exotic BPS states in 4d $\mathcal{N} = 2$ theories [GMN]
- ► The argument against exotics did not require a UV-complete theory. Consider a 5d N = 1 QFT with a Sohnius multiplet, compactified on S¹. Some 4d BPS states come from BPS strings wrapping S¹, so the strings cannot carry R-charge.
- ▶ The discussion can be repeated for BPS particles in 5d $\mathcal{N} = 1$ theories and BPS strings in 6d (1,0) theories. There is also a 3d version (richer due to $SU(2)_R \times SU(2)'_R$ symmetry).
- It would be interesting to extend the argument to framed BPS states, which are bound to a BPS defect.

Thank You for Your Attention!