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1 How should one think about the minimal surface?

In semiclassical gravity, surface areas are related to entropies

Bekenstein-Hawking [’74]: For black hole

S =
1

4GN
area(horizon)

Why?

Possible answer: Microstate bits “live” on horizon, at density

of 1 bit per 4 Planck areas

A

m(A)

Ryu-Takayanagi [’06]: For region in holographic field theory

(classical Einstein gravity, static state)

S(A) =
1

4GN
area(m(A))

m(A) = bulk minimal surface homologous to A

Do microstate bits of A “live” on m(A)?

Unlike horizon, m(A) is not a special place; by choosing A, we can put m(A) almost anywhere
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Puzzles:

• Under continuous changes in boundary region, minimal surface can jump

Example: Union of separated regions A,B

A B B

m(AB) = m(A) [m(B)
m(AB) 6= m(A) [m(B)

A

• Information-theoretic quantities are given by differences of areas of surfaces passing through different parts

of bulk:

Conditional entropy: H(A|B) = S(AB)− S(B)

Mutual information: I(A : B) = S(A) + S(B)− S(AB)

Conditional mutual information: I(A : B|C) = S(AB) + S(BC)− S(ABC)− S(C)
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H(A|B) = S(AB)− S(B) I(A : B) = S(A) + S(B)− S(AB)

Information-theoretic meaning (heuristically):

Classical: H(A|B) = # of (independent) bits belonging purely to A

I(A : B) = # shared with B
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Quantum: Entangled (Bell) pair contributes 2 to I(A : B), −1 to H(A|B); can lead to H(A|B) < 0
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=

I(A : B|C) = S(AB) + S(BC)− S(ABC)− S(C) = correlation between A & B conditioned on C

What do differences between areas of surfaces, passing through different parts of bulk, have to do with

these measures of information?
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• RT obeys strong subadditivity [Headrick-Takayanagi ’07]

I(A : BC) ≥ I(A : C)

What does proof (by cutting & gluing minimal surfaces)

have to do with information-theoretic meaning of SSA

(monotonicity of correlations)?

BA C

+

+

�
�

To answer these questions, I will present a new formulation of RT

• Does not refer to minimal surfaces (demoted to a calculational device)

• Suggests a new way to think about the holographic principle, & about the connection between spacetime

geometry and information
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2 Reformulation of RT

Consider a Riemannian manifold with boundary

Define a flow as a vector field v obeying ∇ · v = 0, |v| ≤ 1

Think of flow as a set of oriented threads (flow lines) beginning & ending on boundary, with transverse density

= |v| ≤ 1

Let A be a subset of boundary

Max flow-min cut theorem (originally on graphs; Riemannian version: [Federer ’74, Strang ’83, Nozawa ’90]):

max
v

∫
A
v = min

m∼A
area(m)

Note:

• Max flow is highly non-unique

(except on m(A), where v = unit normal)

Let v(A) denote any max flow

• Finding max flow is a linear programming problem
A

v(A)

m(A)
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RT version 2.0:

S(A) = max
v

∫
A
v (4GN = 1)

= max # of threads beginning on A

A

BH horizon

A

BH horizon
Threads can end on Ac or horizon

Each thread has cross section of 4 Planck areas & is identified with 1 (independent) bit of A

Automatically incorporates homology & global minimization conditions of RT

A

BH horizon

A

BH horizon

A Threads are “floppy”: lots of freedom to move them around in bulk

& move where they attach to A

Also lots of room near boundary to add extra threads that begin &

end on A (don’t contribute to S(A))

Role of minimal surface: bottleneck, where threads are maximally packed, hence counted by area

Naturally implements holographic principle: entropy ∝ area because bits are carried by one-dimensional objects

Bekenstein-Hawking: A

t

D(A)

m(A)

entanglement wedge

v(A)
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3 Threads & information

Now we address conceptual puzzles with RT raised before

First, v(A) changes continuously with A, even when m(A) jumps

Now consider two regions A, B

We can maximize flux through A or B, not in general through both

But we can always maximize through A and AB (nesting property)

Call such a flow v(A,B)

v(A) v(AB)v(A, B)

.
Example 1: S(A) = S(B) = 2, S(AB) = 3⇒ I(A : B) = 1, H(A|B) = 1

BA

v(A, B)

BA

v(B, A)

A
B

Lesson 1:

• Threads that are stuck on A represent bits unique to A

• Threads that can be moved between A & B represent correlated pairs of bits
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Example 2: S(A) = S(B) = 2, S(AB) = 1⇒ I(A : B) = 3, H(A|B) = −1⇒ entanglement!

One thread leaving A must go to B, and vice versa

BA

v(A, B)

BA

v(B, A)

A
B

Lesson 2:

• Threads that connect A & B (switching orientation) represent entangled pairs of bits

A

BH horizon

A

BH horizon

A
Apply lessons to single region:

• freedom to move beginning points around reflects correlations

within A

• freedom to add threads that begin & end on A reflects

entanglement within A
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In equations:

Conditional entropy: H(A|B) = S(AB)− S(B)

=

∫
AB

v(AB)−
∫
B
v(B)

=

∫
AB

v(B,A)−
∫
B
v(B,A)

=

∫
A
v(B,A)

= min flux on A (maximizing on AB)

Mutual information: I(A : B) = S(A)−H(A|B)

=

∫
A
v(A,B)−

∫
A
v(B,A)

= max−min flux on A (maximizing on AB)

= flux movable between A and B (maximizing on AB)

Max flow can be defined even when flux is infinite: flow that cannot be augmented

Regulator-free definition of mutual information:

I(A : B) =

∫
A
(v(A,B)− v(B,A))
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Conditional mutual information:

BA C

I(A : B|C) = H(A|C)−H(A|BC)

=

∫
A
v(C,A,B)−

∫
A
v(C,B,A)

= max−min flux on A (maximizing on C & ABC)

= flux movable between A & B (maximizing on C & ABC)

= (flux movable between A & BC)− (movable between A & C)

= I(A : BC)− I(A : C)

Strong subadditivity (I(A : B|C) ≥ 0) is clear

In each case, clear connection to information-theoretic meaning of quantity/property

Open problem: Use flows to prove “monogamy of mutual information” property of holographic EEs [Hayden-

Headrick-Maloney ’12]

I(A : BC) ≥ I(A : B) + I(A : C)

and generalizations to more parties [Bao et al ’15]

Flow-based proofs may illuminate the information-theoretic meaning of these inequalities
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4 Extensions

4.1 Emergent geometry

Metric ←→ Set of allowed thread configurations

4.2 Quantum corrections

Faulkner-Lewkowycz-Maldacena [’13]: Quantum

(order G0
N) corrections to RT come from entangle-

ment of bulk fields

May be reproduced by allowing threads to jump from

one point to another (or tunnel through microscopic

wormholes, à la ER = EPR [Maldacena-Susskind ’13])

A

m(A) v(A)

A

m(A) v(A)

4.3 Covariant bit threads

With Veronika Hubeny (to appear)

Hubeny-Rangamani-Takayanagi [’07] covariant entanglement entropy formula:

S(A) = area(m(A))

m(A) = minimal extremal surface homologous to A
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Need generalization of max flow-min cut theorem to Lorentzian setting

Define a flow as a vector field v (in full Lorentzian spacetime) obeying

• ∇ · v = 0

• no flux into or out of singularities

• integrated norm bound: ∀ timelike curve C,∫
C
ds |v⊥| ≤ 1 (v⊥ = projection of v orthogonal to C)

Any observer sees over their lifetime a total of at most 1 thread per 4 Planck areas

Theorem (assuming NEC, using results of Wall [’12] & Headrick-Hubeny-Lawrence-Rangamani [’14]):

max
v

∫
D(A)

v = area(m(A)) D(A) = boundary causal domain of A

Linearizes problem of finding extremal surface area
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HRT version 2.0:

S(A) = max
v

∫
D(A)

v

To maximize flux, threads seek out m(A), automatically confining

themselves to entanglement wedge

Threads can lie on common Cauchy slice (equivalent to Wall’s [’12]

maximin by standard max flow-min cut) or spread out in time

A

t

D(A)

m(A)

entanglement wedge

v(A)
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