Bit Threads and Holographic Entanglement

Matthew Headrick Brandeis University

Strings 2016, Beijing

Based on arXiv:1604.00354 [hep-th], with Michael Freedman

Contents

1	How	How should one think about the minimal surface?		
2	Refc	ormulation of RT	7	
3 Threads & information		eads & information	9	
4	Exte	ensions	13	
	4.1	Emergent geometry	13	
	4.2	Quantum corrections	13	
	4.3	Covariant bit threads	13	

1 How should one think about the minimal surface?

In semiclassical gravity, surface areas are related to entropies

Bekenstein-Hawking ['74]: For black hole

$$S = \frac{1}{4G_{\rm N}} \operatorname{area}(\operatorname{horizon})$$

Why?

Possible answer: Microstate bits "live" on horizon, at density of 1 bit per 4 Planck areas

Ryu-Takayanagi ['06]: For region in holographic field theory (classical Einstein gravity, static state)

$$S(A) = \frac{1}{4G_N} \operatorname{area}(m(A))$$

 $m(A) = {\sf bulk}$ minimal surface homologous to A

Do microstate bits of A "live" on m(A)?

Unlike horizon, m(A) is not a special place; by choosing A, we can put m(A) almost anywhere

Puzzles:

• Under continuous changes in boundary region, minimal surface can jump

Example: Union of separated regions ${\cal A}, {\cal B}$

• Information-theoretic quantities are given by differences of areas of surfaces passing through different parts of bulk:

Conditional entropy:	H(A B) = S(AB) - S(B)
Mutual information:	I(A:B) = S(A) + S(B) - S(AB)
Conditional mutual information:	I(A:B C) = S(AB) + S(BC) - S(ABC) - S(C)

$$H(A|B) = S(AB) - S(B)$$
 $I(A:B) = S(A) + S(B) - S(AB)$

Information-theoretic meaning (heuristically):

Classical: H(A|B) = # of (independent) bits belonging purely to AI(A:B) = # shared with B

Quantum: Entangled (Bell) pair contributes 2 to I(A : B), -1 to H(A|B); can lead to H(A|B) < 0

I(A:B|C) = S(AB) + S(BC) - S(ABC) - S(C) = correlation between A & B conditioned on CWhat do differences between areas of surfaces, passing through different parts of bulk, have to do with these measures of information? • RT obeys strong subadditivity [Headrick-Takayanagi '07]

 $I(A:BC) \ge I(A:C)$

What does proof (by cutting & gluing minimal surfaces) have to do with information-theoretic meaning of SSA (monotonicity of correlations)?

To answer these questions, I will present a new formulation of RT

- Does not refer to minimal surfaces (demoted to a calculational device)
- Suggests a new way to think about the holographic principle, & about the connection between spacetime geometry and information

2 Reformulation of RT

Consider a Riemannian manifold with boundary

Define a *flow* as a vector field v obeying $\nabla \cdot v = 0$, $|v| \leq 1$

Think of flow as a set of oriented threads (flow lines) beginning & ending on boundary, with transverse density $= |v| \le 1$

Let \boldsymbol{A} be a subset of boundary

Max flow-min cut theorem (originally on graphs; Riemannian version: [Federer '74, Strang '83, Nozawa '90]):

$$\max_v \int_A v = \min_{m \sim A} \operatorname{area}(m)$$

Note:

- Max flow is highly non-unique (except on m(A), where v = unit normal)
 Let v(A) denote any max flow
- Finding max flow is a linear programming problem

RT version 2.0:

$$\begin{split} S(A) &= \max_{v} \int_{A} v \qquad (4G_{\rm N}=1) \\ &= \max \# \text{ of threads beginning on } A \end{split}$$

Threads can end on A^c or horizon

Each thread has cross section of 4 Planck areas & is identified with 1 (independent) bit of A

Automatically incorporates homology & global minimization conditions of RT

Threads are "floppy": lots of freedom to move them around in bulk & move where they attach to ${\cal A}$

Also lots of room near boundary to add extra threads that begin & end on A (don't contribute to S(A))

Role of minimal surface: bottleneck, where threads are maximally packed, hence counted by area

Naturally implements holographic principle: entropy \propto area because bits are carried by one-dimensional objects

Bekenstein-Hawking:

3 Threads & information

Now we address conceptual puzzles with RT raised before

First, v(A) changes continuously with A, even when m(A) jumps

Now consider two regions A, B

We can maximize flux through A or B, not in general through both But we can always maximize through A and AB (nesting property) Call such a flow v(A, B)

Example 1: S(A) = S(B) = 2, $S(AB) = 3 \Rightarrow I(A:B) = 1$, H(A|B) = 1

Lesson 1:

- $\bullet\,$ Threads that are stuck on A represent bits unique to A
- Threads that can be moved between A & B represent correlated pairs of bits

 $\text{Example 2: } S(A) = S(B) = 2 \text{, } S(AB) = 1 \Rightarrow I(A:B) = 3 \text{, } H(A|B) = -1 \Rightarrow \text{entanglement!}$

One thread leaving A must go to B, and vice versa

Lesson 2:

• Threads that connect A & B (switching orientation) represent entangled pairs of bits

Apply lessons to single region:

- freedom to move beginning points around reflects correlations within \boldsymbol{A}
- freedom to add threads that begin & end on ${\cal A}$ reflects entanglement within ${\cal A}$

In equations:

Conditional entropy:

$$\begin{aligned} H(A|B) &= S(AB) - S(B) \\ &= \int_{AB} v(AB) - \int_{B} v(B) \\ &= \int_{AB} v(B,A) - \int_{B} v(B,A) \\ &= \int_{A} v(B,A) \\ &= \min \text{ flux on } A \text{ (maximizing on } AB) \end{aligned}$$

Mutual information: I(A:B) = S(A) - H(A|B) $= \int_{A} v(A,B) - \int_{A} v(B,A)$ $= \max - \min \text{ flux on } A \text{ (maximizing on } AB)$ = flux movable between A and B (maximizing on AB)

Max flow can be defined even when flux is infinite: flow that cannot be augmented Regulator-free definition of mutual information:

$$I(A:B) = \int_A \left(v(A,B) - v(B,A) \right)$$

Conditional mutual information:

$$I(A:B|C) = H(A|C) - H(A|BC)$$

$$A \qquad C \qquad B \qquad = \int_{A} v(C,A,B) - \int_{A} v(C,B,A)$$

$$= \max - \min \text{ flux on } A \text{ (maximizing on } C \& ABC)$$

$$= \text{ flux movable between } A \& B \text{ (maximizing on } C \& ABC)$$

$$= (\text{flux movable between } A \& BC) - (\text{movable between } A \& C)$$

$$= I(A:BC) - I(A:C)$$

Strong subadditivity $(I(A:B|C) \ge 0)$ is clear

In each case, clear connection to information-theoretic meaning of quantity/property

Open problem: Use flows to prove "monogamy of mutual information" property of holographic EEs [Hayden-Headrick-Maloney '12]

 $I(A:BC) \ge I(A:B) + I(A:C)$

and generalizations to more parties [Bao et al '15]

Flow-based proofs may illuminate the information-theoretic meaning of these inequalities

4 Extensions

4.1 Emergent geometry

 $\mathsf{Metric} \quad \longleftrightarrow \quad \mathsf{Set of allowed thread configurations}$

4.2 Quantum corrections

Faulkner-Lewkowycz-Maldacena ['13]: Quantum (order $G^0_{\rm N})$ corrections to RT come from entanglement of bulk fields

May be reproduced by allowing threads to jump from one point to another (or tunnel through microscopic wormholes, à la ER = EPR [Maldacena-Susskind '13])

4.3 Covariant bit threads

With Veronika Hubeny (to appear)

Hubeny-Rangamani-Takayanagi ['07] covariant entanglement entropy formula:

 $S(A) = \operatorname{area}(m(A))$

m(A) = minimal extremal surface homologous to A

Need generalization of max flow-min cut theorem to Lorentzian setting

Define a *flow* as a vector field v (in full Lorentzian spacetime) obeying

•
$$\nabla \cdot v = 0$$

- no flux into or out of singularities
- integrated norm bound: \forall timelike curve C,

$$\int_C ds \, |v_{\perp}| \le 1 \qquad (v_{\perp} = \text{projection of } v \text{ orthogonal to } C)$$

Any observer sees over their lifetime a total of at most 1 thread per 4 Planck areas

Theorem (assuming NEC, using results of Wall ['12] & Headrick-Hubeny-Lawrence-Rangamani ['14]):

$$\max_{v} \int_{D(A)} v = \operatorname{area}(m(A)) \qquad \qquad D(A) = \text{boundary causal domain of } A$$

Linearizes problem of finding extremal surface area

HRT version 2.0:

$$S(A) = \max_{v} \int_{D(A)} v$$

To maximize flux, threads seek out $m({\cal A}),$ automatically confining themselves to entanglement wedge

Threads can lie on common Cauchy slice (equivalent to Wall's ['12] maximin by standard max flow-min cut) or spread out in time

