Bit Threads and Holographic Entanglement

Matthew Headrick
Brandeis University

Strings 2016, Beijing

Based on arXiv:1604.00354 [hep-th], with Michael Freedman

Contents

1 How should one think about the minimal surface? 3
2 Reformulation of RT 7
3 Threads \& information 9
4 Extensions 13
4.1 Emergent geometry . 13
4.2 Quantum corrections . 13
4.3 Covariant bit threads . 13

1 How should one think about the minimal surface?

In semiclassical gravity, surface areas are related to entropies
Bekenstein-Hawking ['74]: For black hole

$$
S=\frac{1}{4 G_{\mathrm{N}}} \text { area(horizon) }
$$

Why?
Possible answer: Microstate bits "live" on horizon, at density of 1 bit per 4 Planck areas

Ryu-Takayanagi ['06]: For region in holographic field theory (classical Einstein gravity, static state)

$$
S(A)=\frac{1}{4 G_{N}} \operatorname{area}(m(A))
$$

$m(A)=$ bulk minimal surface homologous to A
Do microstate bits of A "live" on $m(A)$?
Unlike horizon, $m(A)$ is not a special place; by choosing A, we can put $m(A)$ almost anywhere

Puzzles:

- Under continuous changes in boundary region, minimal surface can jump

Example: Union of separated regions A, B

- Information-theoretic quantities are given by differences of areas of surfaces passing through different parts of bulk:

$$
\begin{aligned}
\text { Conditional entropy: } & H(A \mid B)=S(A B)-S(B) \\
\text { Mutual information: } & I(A: B)=S(A)+S(B)-S(A B) \\
\text { Conditional mutual information: } & I(A: B \mid C)=S(A B)+S(B C)-S(A B C)-S(C)
\end{aligned}
$$

$$
H(A \mid B)=S(A B)-S(B) \quad I(A: B)=S(A)+S(B)-S(A B)
$$

Information-theoretic meaning (heuristically):
Classical:

Quantum: Entangled (Bell) pair contributes 2 to $I(A: B),-1$ to $H(A \mid B)$; can lead to $H(A \mid B)<0$

$$
\begin{aligned}
& \rightleftarrows
\end{aligned}
$$

$I(A: B \mid C)=S(A B)+S(B C)-S(A B C)-S(C)=$ correlation between $A \& B$ conditioned on C
What do differences between areas of surfaces, passing through different parts of bulk, have to do with these measures of information?

- RT obeys strong subadditivity [Headrick-Takayanagi '07]

$$
I(A: B C) \geq I(A: C)
$$

What does proof (by cutting \& gluing minimal surfaces) have to do with information-theoretic meaning of SSA
 (monotonicity of correlations)?

To answer these questions, I will present a new formulation of RT

- Does not refer to minimal surfaces (demoted to a calculational device)
- Suggests a new way to think about the holographic principle, \& about the connection between spacetime geometry and information

2 Reformulation of RT

Consider a Riemannian manifold with boundary

Define a flow as a vector field v obeying $\nabla \cdot v=0,|v| \leq 1$
Think of flow as a set of oriented threads (flow lines) beginning \& ending on boundary, with transverse density $=|v| \leq 1$

Let A be a subset of boundary

Max flow-min cut theorem (originally on graphs; Riemannian version: [Federer '74, Strang '83, Nozawa '90]):

$$
\max _{v} \int_{A} v=\min _{m \sim A} \operatorname{area}(m)
$$

Note:

- Max flow is highly non-unique (except on $m(A)$, where $v=$ unit normal) Let $v(A)$ denote any max flow
- Finding max flow is a linear programming problem

RT version 2.0:

$$
\begin{aligned}
S(A) & =\max _{v} \int_{A} v \quad\left(4 G_{\mathrm{N}}=1\right) \\
& =\max \# \text { of threads beginning on } A
\end{aligned}
$$

BH horizon

Threads can end on A^{c} or horizon
Each thread has cross section of 4 Planck areas \& is identified with 1 (independent) bit of A
Automatically incorporates homology \& global minimization conditions of RT

Threads are "floppy": lots of freedom to move them around in bulk \& move where they attach to A

Also lots of room near boundary to add extra threads that begin \& end on A (don't contribute to $S(A)$)

Role of minimal surface: bottleneck, where threads are maximally packed, hence counted by area
Naturally implements holographic principle: entropy \propto area because bits are carried by one-dimensional objects Bekenstein-Hawking:

3 Threads \& information

Now we address conceptual puzzles with RT raised before
First, $v(A)$ changes continuously with A, even when $m(A)$ jumps
Now consider two regions A, B
We can maximize flux through A or B, not in general through both But we can always maximize through A and $A B$ (nesting property) Call such a flow $v(A, B)$

Example 1: $S(A)=S(B)=2, S(A B)=3 \Rightarrow I(A: B)=1, H(A \mid B)=1$

Lesson 1:

- Threads that are stuck on A represent bits unique to A
- Threads that can be moved between $A \& B$ represent correlated pairs of bits

Example 2: $S(A)=S(B)=2, S(A B)=1 \Rightarrow I(A: B)=3, H(A \mid B)=-1 \Rightarrow$ entanglement!
One thread leaving A must go to B, and vice versa

Lesson 2:

- Threads that connect $A \& B$ (switching orientation) represent entangled pairs of bits

Apply lessons to single region:

- freedom to move beginning points around reflects correlations within A
- freedom to add threads that begin \& end on A reflects entanglement within A

In equations:

Conditional entropy:

$$
\begin{aligned}
H(A \mid B) & =S(A B)-S(B) \\
& =\int_{A B} v(A B)-\int_{B} v(B) \\
& =\int_{A B} v(B, A)-\int_{B} v(B, A) \\
& =\int_{A} v(B, A) \\
& =\min \text { flux on } A \text { (maximizing on } A B)
\end{aligned}
$$

Mutual information: $\quad I(A: B)=S(A)-H(A \mid B)$

$$
=\int_{A} v(A, B)-\int_{A} v(B, A)
$$

$$
=\max -\min \text { flux on } A(\text { maximizing on } A B)
$$

$$
=\text { flux movable between } A \text { and } B \text { (maximizing on } A B \text {) }
$$

Max flow can be defined even when flux is infinite: flow that cannot be augmented Regulator-free definition of mutual information:

$$
I(A: B)=\int_{A}(v(A, B)-v(B, A))
$$

Conditional mutual information:

Strong subadditivity $(I(A: B \mid C) \geq 0)$ is clear
In each case, clear connection to information-theoretic meaning of quantity/property
Open problem: Use flows to prove "monogamy of mutual information" property of holographic EEs [Hayden-Headrick-Maloney '12]

$$
I(A: B C) \geq I(A: B)+I(A: C)
$$

and generalizations to more parties [Bao et al '15]
Flow-based proofs may illuminate the information-theoretic meaning of these inequalities

4 Extensions

4.1 Emergent geometry

Metric \longleftrightarrow Set of allowed thread configurations

4.2 Quantum corrections

Faulkner-Lewkowycz-Maldacena ['13]: Quantum (order G_{N}^{0}) corrections to RT come from entanglement of bulk fields

May be reproduced by allowing threads to jump from one point to another (or tunnel through microscopic wormholes, à la ER = EPR [Maldacena-Susskind '13])

4.3 Covariant bit threads

With Veronika Hubeny (to appear)
Hubeny-Rangamani-Takayanagi ['07] covariant entanglement entropy formula:

$$
S(A)=\operatorname{area}(m(A))
$$

$m(A)=$ minimal extremal surface homologous to A

Need generalization of max flow-min cut theorem to Lorentzian setting
Define a flow as a vector field v (in full Lorentzian spacetime) obeying

- $\nabla \cdot v=0$
- no flux into or out of singularities
- integrated norm bound: \forall timelike curve C,

$$
\int_{C} d s\left|v_{\perp}\right| \leq 1 \quad\left(v_{\perp}=\text { projection of } v \text { orthogonal to } C\right)
$$

Any observer sees over their lifetime a total of at most 1 thread per 4 Planck areas
Theorem (assuming NEC, using results of Wall ['12] \& Headrick-Hubeny-Lawrence-Rangamani ['14]):

$$
\max _{v} \int_{D(A)} v=\operatorname{area}(m(A)) \quad D(A)=\text { boundary causal domain of } A
$$

Linearizes problem of finding extremal surface area

HRT version 2.0:

$$
S(A)=\max _{v} \int_{D(A)} v
$$

To maximize flux, threads seek out $m(A)$, automatically confining themselves to entanglement wedge

Threads can lie on common Cauchy slice (equivalent to Wall's ['12] maximin by standard max flow-min cut) or spread out in time

