On non-planar
 scattering amplitudes

Johannes M. Henn

Johannes Gutenberg Universität Mainz

In collaboration with
Bernhard Mistlberger (CERN)
Based on arXiv: 1608.00850

Strings 2016 Beijing

Motivation

- analytic `data` for amplitudes essential catalyst for developing new methods
- N=4 super Yang-Mills perfect laboratory 'QFT analog of hydrogen atom in QM'
- impressive progress, but mostly limited to the planar sector of the theory
- intriguing insights into properties of nonplanar loop integrands
- very few analytic results for integrated answer

This talk: full 3-loop four-particle amplitude

loop integrands

many different representations available in literature

- form admitting BCJ duality
[Bern, Carrasco, Dixon, Johansson, Roiban 2008]
- manifest UV properties
[Bern, Carrasco, Dixon, Johansson, Roiban 2012]
- d-log forms, absence of `poles at infinity`

```
[Arkani-Hamed, Bourjaily, Cachazo, Trnka 2014]
[Bern, Herrmann, Litsey, Stankowicz, Trnka 2015+2016]
```

difficulty: non-planar 3-loop integrals unknown

3- loop integrals

(d)

(g)

(h)

(i)

- all planar integrals of type (a),(e) computed in
[JMH, A.V. Smirnov, 2013]
- non-planar sample integrals [JMH, A.V. Smirnov, V.A. Smirnov, 2013]
- extended calculation to all non-planar families

Main points of the method

- use integral basis that has unit leading singularities [Arkani-Hamed et al; JMH]
- differential equation method

[Kotikov; Bern, Dixon, Kosower; Remiddi; Gehrmann; JMH 2013]

$$
\partial_{x} \vec{f}(x ; \epsilon)=\epsilon\left[\frac{a}{x}+\frac{b}{1+x}\right] \vec{f}(x ; \epsilon) \quad x=t / s
$$

- boundary conditions from consistency and symmetry
- all constants expressed in terms of multiple zeta values
- solution in Laurent expansion

Integral reduction

- Feynman integrals satisfy integration-by-parts identities
- public codes available for solving them
- we used a private implementation by Bernhard Mistlberger

Integral reduction

- Feynman integrals satisfy integration-by-parts identities
- public codes available for solving them
- we used a private implementation by Bernhard Mistlberger

We got some additional help from u0001

Many thanks to computing department ZDV at Mainz university!

example

- unit leading singularities basis integral

$$
I=s(s+t) I_{f}\left[\left(l_{1}+p_{4}\right)^{4}\right]
$$

- epsilon expansion

$$
\begin{aligned}
I= & -\frac{1}{\epsilon^{6}} \frac{47}{36} \\
& +\frac{1}{\epsilon^{5}}\left[-\frac{8 i \pi}{3}+\frac{8 H_{-1}}{3}-\frac{3 H_{0}}{4}\right] \\
& +\frac{1}{\epsilon^{4}}\left[-4 H_{-1,-1}+H_{-1,0}+\frac{H_{0,0}}{4}+\frac{503 \zeta_{2}}{24}+4 i \pi H_{-1}-i \pi H_{0}+H_{-2}\right] \\
& +\frac{1}{\epsilon^{3}}\left[2 i \pi H_{0,0}+2 H_{-2,-1}-2 H_{-2,0}-2 H_{-1,0,0}+\frac{21}{4} H_{0,0,0}+31 i \pi \zeta_{2}\right. \\
& \left.\quad+\frac{715 \zeta_{3}}{36}-2 i \pi H_{-2}-33 \zeta_{2} H_{-1}+\frac{355 \zeta_{2} H_{0}}{24}-2 H_{-3}\right] \\
& +\mathcal{O}\left(\epsilon^{-2}\right)
\end{aligned}
$$

- functions H : harmonic polylogarithms, uniform weight

Application to four-particle scattering amplitude

- Mandelstam variables

$$
s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{2}+p_{3}\right)^{2}
$$

- dimension $D=4-2 \epsilon$

- expansion in coupling $\alpha=\frac{g^{2}}{4 \pi^{2}}\left(4 \pi e^{-\gamma_{\mathrm{E}}}\right)^{\epsilon}$

$$
\mathcal{A}\left(p_{i} ; \epsilon\right)=\mathcal{K} \sum_{L=0}^{\infty} \alpha^{L} \mathcal{A}^{(L)}(s, t ; \epsilon)
$$

Color decomposition

- trace basis

$$
\begin{array}{ll}
\operatorname{tr}\left(T^{a_{1}} T^{a_{2}} T^{a_{3}} T^{a_{4}}\right)=\operatorname{tr}(1234) . \\
C_{1}=\operatorname{tr}(1234)+\operatorname{tr}(1432) & C_{4}=\operatorname{tr}(12) \operatorname{tr}(34) \\
C_{2}=\operatorname{tr}(1243)+\operatorname{tr}(1342) & C_{5}=\operatorname{tr}(13) \operatorname{tr}(24) \\
C_{3}=\operatorname{tr}(1423)+\operatorname{tr}(1324) & C_{6}=\operatorname{tr}(14) \operatorname{tr}(23)
\end{array}
$$

- expansion in powers of N

$$
\begin{aligned}
\mathcal{A}^{(L)}= & \sum_{\lambda=1}^{3}\left(\sum_{k=0}^{\left\lfloor\frac{L}{2}\right\rfloor} N^{L-2 k} A_{\lambda}^{(L, 2 k)}\right) C_{\lambda} \\
& +\sum_{\lambda=4}^{6}\left(\sum_{k=0}^{\left\lfloor\frac{L-1}{2}\right\rfloor} N^{L-2 k-1} A_{\lambda}^{(L, 2 k+1)}\right) C_{\lambda}
\end{aligned}
$$

Independent components

$$
\lambda=1,2,3 \quad \rho=4,5,6
$$

- leading power of N

$$
A_{\lambda}^{(L, 0)}
$$

- subleading powers of N

$$
\begin{aligned}
& A_{\lambda}^{(2,2)} \\
& A_{\lambda}^{(3,2)} \quad A_{\rho}^{(3,3)} \quad A_{\rho}^{(3,1)}
\end{aligned}
$$

- related by color identities [Bern, Kosower; Naculich]
e.g. $U(1)$ decoupling identity

$$
A_{4}^{(1,1)}=A_{5}^{(1,1)}=A_{6}^{(1,1)}=2 \sum_{\lambda=1}^{3} A_{\lambda}^{(1,0)}
$$

Independent components

$$
\lambda=1,2,3 \quad \rho=4,5,6
$$

- leading power of N

$$
A_{\lambda}^{(L, 0)}
$$

- subleading powers of N

$$
A_{\lambda}^{(2,2)}
$$

$$
A_{\lambda}^{(3,2)}
$$

$$
A_{\rho}^{(3,3)}
$$

- related by color identities [Bern, Kosower; Naculich]
e.g. $\mathrm{U}(1)$ decoupling identity

$$
A_{4}^{(1,1)}=A_{5}^{(1,1)}=A_{6}^{(1,1)}=2 \sum_{\lambda=1}^{3} A_{\lambda}^{(1,0)}
$$

Infrared structure (1)

infrared divergences controlled by RG equation for Wilson lines

$$
\begin{aligned}
& \mathcal{A}\left(p_{i}, \epsilon\right)=\mathbf{Z}\left(p_{i}, \epsilon\right) \mathcal{A}^{f}\left(p_{i}, \epsilon\right) \\
& \mathbf{Z}\left(p_{i}, \epsilon\right)=\mathcal{P} \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \mu^{2}}{\mu^{2}} \boldsymbol{\Gamma}\left(p_{i}, \mu^{2}, \alpha\left(\mu^{2}\right)\right)\right\}
\end{aligned}
$$

in $N=4$ SYM integral can be done explicitly

$$
\frac{1}{4} \sum_{L=1}^{\infty} \alpha^{L}\left[\frac{\gamma_{C}^{(L)}}{L^{2} \epsilon^{2}} \mathbf{D}_{\mathbf{0}}-\frac{\gamma_{C}^{(L)}}{L \epsilon} \mathbf{D}+\frac{4}{L \epsilon} \gamma_{J}^{(L)} \mathbb{I}+\frac{1}{L \epsilon} \boldsymbol{\Delta}^{(L)}\right]
$$

2 loops: dipole formula
[Catani; Teyeda-Yeomans, Sterman]

$$
\mathbf{D}_{0}=\sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j}, \quad \mathbf{D}=\sum_{i \neq j} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \log \left(\frac{-s_{i j}}{\mu^{2}}\right)
$$

corrections at 3 loops
[Almelid, Duhr, Gardi, 2015]

Infrared structure (2)

 corrections at 3 loops$$
\begin{align*}
& \Delta_{n}^{(3)}\left(\left\{\rho_{i j k l}\right\}\right)=16 f_{a b e} f_{c d e}\left\{-C \sum_{i=1}^{n} \sum_{j \leq k \leq \leq n}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}+\right. \tag{4.1}\\
& \left.\sum_{1 \leq i<j<k<1 \leq n}\left[\mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d} \mathscr{F}\left(\rho_{i k j l}, \rho_{i j k}\right)+\mathbf{T}_{i}^{a} \mathbf{T}_{k}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{l}^{d} \mathscr{F}\left(\rho_{i j k l}, \rho_{i k j}\right)+\mathbf{T}_{i}^{a} \mathbf{T}_{l}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{k}^{d} \mathscr{F}\left(\rho_{i j k}, \rho_{i k l j}\right)\right]\right\},
\end{align*}
$$

for $\mathrm{n}=4$ points we extract

$$
\begin{align*}
& \Delta_{4}^{(3)}=4 f_{a b e} f_{c d e}\left[\mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d} \mathcal{S}(x)\right. \\
& \left.+\mathbf{T}_{4}^{a} \mathbf{T}_{1}^{b} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{d} \mathcal{S}(1 / x)\right], \\
& \Delta_{3}^{(3)}=-C f_{a b e} f_{c d e} \sum_{\substack{i=1 . .4 \\
1 \leq j \leq k \leq 4 \\
j, k \neq i}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} . \\
& \mathcal{S}(x)= \tag{13}\\
& 2 H_{-3,-2}+2 H_{-2,-3}-2 H_{-3,-1,-1}+2 H_{-3,-1,0} \\
& -2 H_{-2,-2,-1}+2 H_{-2,-2,0}-2 H_{-2,-1,-2}-H_{-1,-2,-2} \\
& -H_{-1,-1,-3}+4 H_{-2,-1,-1,-1}-2 H_{-2,-1,-1,0} \\
& -H_{-1,-2,-1,0}-H_{-1,-1,-2,0}+\zeta_{3} H_{-1,-1}+4 \zeta_{3} \zeta_{2}-\zeta_{5} \\
& +\zeta_{2}\left(6 H_{-3}-10 H_{-2,-1}+6 H_{-2,0}-H_{-1,-2}-H_{-1,-1,0}\right) \\
& +i \pi\left[2 H_{-3,-1}-2 H_{-3,0}+2 H_{-2,-2}-4 H_{-2,-1,-1}\right. \\
& +2 H_{-2,-1,0}-2 H_{-2,0,0}+H_{-1,-2,0}+H_{-1,-1,0,0} \\
& x=t / s \quad u=-s-t>0 \\
& \left.+\zeta\left(3 H_{-1,-1}-4 H_{-2}\right)-\zeta_{3} H_{-1}\right] \text {. }
\end{align*}
$$

H : harmonic polylogarithms
predicts infrared divergences of any massless 4-particle amplitude

finite part

- infrared-finite part

$$
\mathcal{H}=\lim _{\epsilon \rightarrow 0} \mathcal{A}^{f}
$$

- planar contribution given by simple formula to all orders

$$
\begin{align*}
& \sum_{L} \alpha^{L} H_{1}^{(L, 0)}= H_{1}^{(0,0)} \exp \left\{-\frac{N_{c} \gamma_{c}(\alpha)}{2} \log \frac{-s}{\mu^{2}} \log \frac{-t}{\mu^{2}}\right. \\
&\left.-\frac{\gamma_{J}(\alpha)}{2}\left[\log \frac{-s}{\mu^{2}}+\log \frac{-t}{\mu^{2}}\right]+C(\alpha)\right\}, \tag{16}\\
& \text { [conjecture: Bern, Dixon, Smirnov, 2005] }
\end{align*}
$$

- independent non-planar contributions

2 loops: $H_{1}^{(2,2)}$
3 loops: $H_{1}^{(3,2)} \quad H_{4}^{(3,1)}$

independent function at 2 loops

$$
\left.\begin{array}{rl}
\mathcal{H}_{1}^{(2,2)}=\frac{i \mathcal{K}}{x}\{ & 18 \zeta_{2} H_{-1,0}+24 \zeta_{2} H_{0,0}-8 H_{-3,-1}+6 H_{-3,0}-6 H_{-2,-2}+2 H_{-1,-3}-2 H_{-2,-1,-1} \\
& -6 H_{-2,-1,0}+2 H_{-2,0,0}-6 H_{-1,-2,-1}+2 H_{-1,-2,0}-10 H_{-1,-1,-2}+8 H_{-1,-1,-1,-1} \\
& -10 H_{-1,-1,-1,0}+4 H_{-1,-1,0,0}-2 H_{-1,0,0,0}-6 \zeta_{2} H_{-2}-2 \zeta_{3} H_{-1}+6 H_{-4} \\
+ & i \pi\left[2 H_{-2,-1}+6 H_{-2,0}+6 H_{-1,-2}-8 H_{-1,-1,-1}+10 H_{-1,-1,0}-2 H_{-1,0,0}\right.
\end{array}\right\} \begin{aligned}
& \frac{i \mathcal{K}}{1+x}\left\{\begin{aligned}
& -36 \zeta_{2} H_{-1,0}-12 \zeta_{2} H_{0,0}+8 H_{-3,-1}-8 H_{-3,0}+4 H_{-2,-2}-4 H_{-2,-1,-1} \\
& +4 H_{-2,-1,0}+4 H_{-1,-2,-1}+12 H_{-1,-1,-2}+12 H_{-1,-1,-1,0}-4 H_{-1,-1,0,0} \\
& -4 H_{-1,0,0,0}+4 H_{0,0,0,0}-78 \zeta_{4}+12 \zeta_{2} H_{-2}+4 \zeta_{3} H_{-1}-8 H_{-4} \\
& +i \pi\left[4 H_{-2,-1}-4 H_{-2,0}-4 H_{-1,-2}-12 H_{-1,-1,0}+8 H_{0,0,0}-4 \zeta_{2} H_{-1}\right.
\end{aligned}\right. \\
&\left.\left.+16 \zeta_{2} H_{0}-8 H_{-3}\right]\right\}
\end{aligned}
$$

[appeared in different form in Naculich, Nastase, Schnitzer, 2013] uniform weight 4; similarly, two new weight 6 functions at 3 loops

Regge limit

take $s \gg t$
useful to decompose into irreducible representations in t-channel
$\mu^{2}=-t$
in octet channel we find

$$
\begin{aligned}
\left.\mathcal{A}_{\boldsymbol{8}_{a}} \sim s^{w_{\boldsymbol{8}_{a}}} \quad w_{\boldsymbol{8}_{a}}\right|_{\alpha^{3}}= & N_{c}^{3}\left[\frac{11 \zeta_{4}}{48} \frac{1}{\epsilon}+\frac{5}{24} \zeta_{2} \zeta_{3}+\frac{1}{4} \zeta_{5}+\mathcal{O}(\epsilon)\right] \\
& +N_{c}\left[\frac{\zeta_{2}}{4} \frac{1}{\epsilon^{3}}-\frac{15 \zeta_{4}}{16} \frac{1}{\epsilon}-\frac{77}{4} \zeta_{2} \zeta_{3}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

also predictions for other channels
can be used to test Regge theory and determine parameters, in particular 3-loop Regge trajectory

Regge limit

take $s \gg t$
Regge limit of finite part

$$
\begin{align*}
& \mathcal{H}=\sum_{k, q} \alpha^{k}\left(\log \frac{s}{t}\right)^{q} \mathbf{O}_{k, q} \mathcal{H}^{(0)}+\mathcal{O}(1) \\
& \mathbf{O}_{2,1}=-\frac{1}{8} \zeta_{3} \mathbf{T}^{2}, \tag{19}\\
& \mathbf{O}_{3,2}= i \pi \frac{11}{24} \zeta_{3}[[\mathbf{S}, \mathbf{T}], \mathbf{T}] \tag{20}\\
& \mathbf{O}_{3,1}= i \pi \frac{1}{16} \zeta_{4}(3[\mathbf{S}, \mathbf{T}] \mathbf{T}+58[[\mathbf{S}, \mathbf{T}], \mathbf{T}]) \\
&+\frac{11}{6} \zeta_{2} \zeta_{3}\left(3[\mathbf{S}, \mathbf{T}] \mathbf{T}+2[[\mathbf{S}, \mathbf{T}], \mathbf{T}]-\left[\mathbf{S}^{2}, \mathbf{T}\right]\right) \\
&+\left(\frac{1}{4} \zeta_{5}-\frac{1}{24} \zeta_{2} \zeta_{3}\right) \mathbf{T}^{3}-4 \zeta_{2} \zeta_{3} \mathbf{T} \tag{21}
\end{align*}
$$

color operators $\mathbf{S}=\left(\mathbf{T}_{1}+\mathbf{T}_{2}\right)^{2} \quad \mathbf{T}=\left(\mathbf{T}_{2}+\mathbf{T}_{3}\right)^{2}$

Conclusion

- milestone in perturbative QFT: full 3-loop four-gluon scattering amplitude
- independent verification of 3-loop soft anomalous dimension matrix predicts infrared divergences of any massless four-particle amplitude
- non-trivial data point for the study of non-planar scattering amplitudes

