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Motivation
• analytic `data` for amplitudes essential 

catalyst for developing new methods
• N=4 super Yang-Mills perfect laboratory 
    `QFT analog of hydrogen atom in QM`

• impressive progress, but mostly limited to 
the planar sector of the theory

• intriguing insights into properties of non-
planar loop integrands

• very few analytic results for integrated answer

This talk: full 3-loop four-particle amplitude



loop integrands
many different representations available in literature

• form admitting BCJ duality

• manifest UV properties

• d-log forms, absence of `poles at infinity`

[Bern, Carrasco, Dixon, Johansson, Roiban 2012]

[Bern, Herrmann, Litsey, Stankowicz, Trnka 2015+2016]
[Arkani-Hamed, Bourjaily, Cachazo, Trnka 2014]

[Bern, Carrasco, Dixon, Johansson, Roiban 2008]

difficulty: non-planar 3-loop integrals unknown



3- loop integrals
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Figure 1. Three-loop four-point diagrams.

The matrices ˜A↵k are constant matrices and the arguments of the logarithms ↵i (letters)
are functions of x. One tries to arrive at differential equations where letters are as simple
as possible.

Let us deal with the case of two scales, i.e. with one variable in the DE, i.e. n = 1 so
that x is just one variable. Then one tries to achive the following form of DE:

f 0
(✏, x) = ✏

X

k

ak
x� x(k)

f(✏, x) . (1.4)

where x(k) is a set of singular points of the DE and N ⇥N matrices ak are independent of
x and ✏.

In [8] we used this strategy to evaluate all the master integrals for the two families of
the planar integrals denoted by A and B in Fig. 1 where we follow the notation of [22]. The
goal of the present paper is to do this for the non-planar families B,C,D,F,G,H,I.

These integrals have fifteen indices: we associate the first ten of them to the edges of
the graphsand the last five to numerators. Explicitly, we have

FB
a1,...,a15(s, t;D) =

Z Z Z

d

Dk1 dDk2 dDk3
(�k21)

a1
[�(p1 + p2 + k1)2]a2(�k22)

a3

⇥ [�(k1 � p3)2]�a11
[�(p1 + k2)2]�a12

[�(k2 � p3)2]�a13

[�(p1 + p2 + k2)2]a4(�k23)
a5
[�(p1 + p2 + p3 + k2 � k3)2]a6 [�(p1 + k1)2]a7

⇥ [�(p1 + k3)2]�a14
[�(k1 � k3)2]�a15

[�(k1 � k2)2]a8 [�(k2 � k3)2]a9 [�(k3 � p3)2]a10
, (1.5)

– 2 –

• all planar integrals of type (a),(e) computed in
[JMH, A.V. Smirnov, 2013]

• extended calculation to all non-planar families
[JMH, B. Mistlberger, A.V. Smirnov, to appear]

• non-planar sample integrals [JMH, A.V. Smirnov, V.A. Smirnov, 2013]



Main points of the method
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– 2 –

• use integral basis that has unit 
leading singularities

• differential equation method
[Arkani-Hamed et al; JMH]

[Kotikov; Bern, Dixon, Kosower; Remiddi; Gehrmann; JMH 2013]

@

x

~

f(x; ✏) = ✏


a

x

+
b

1 + x

�
~

f(x; ✏)
x = t/s

• boundary conditions from consistency and symmetry
• all constants expressed in terms of multiple zeta values
• solution in Laurent expansion



Integral reduction

• we used a private implementation by Bernhard Mistlberger

• Feynman integrals satisfy integration-by-parts identities

• public codes available for solving them



Integral reduction

• we used a private implementation by Bernhard Mistlberger

Many thanks to computing 
department ZDV at Mainz university!

• Feynman integrals satisfy integration-by-parts identities

• public codes available for solving them

We got some additional 
help from u0001



example

• epsilon expansion

• functions H: harmonic polylogarithms, uniform weight

1.3 Formulas

H(2,2)
1 =

iK
x

(
18⇣2H�1,0 + 24⇣2H0,0 � 8H�3,�1 + 6H�3,0 � 6H�2,�2 + 2H�1,�3 � 2H�2,�1,�1

�6H�2,�1,0 + 2H�2,0,0 � 6H�1,�2,�1 + 2H�1,�2,0 � 10H�1,�1,�2 + 8H�1,�1,�1,�1

�10H�1,�1,�1,0 + 4H�1,�1,0,0 � 2H�1,0,0,0 � 6⇣2H�2 � 2⇣3H�1 + 6H�4

+i⇡

"
2H�2,�1 + 6H�2,0 + 6H�1,�2 � 8H�1,�1,�1 + 10H�1,�1,0 � 2H�1,0,0

�6H0,0,0 � 14H�1⇣2 + 8H�3 � 6⇣3

#)

iK
1 + x

(
� 36⇣2H�1,0 � 12⇣2H0,0 + 8H�3,�1 � 8H�3,0 + 4H�2,�2 � 4H�2,�1,�1

+4H�2,�1,0 + 4H�1,�2,�1 + 12H�1,�1,�2 + 12H�1,�1,�1,0 � 4H�1,�1,0,0

�4H�1,0,0,0 + 4H0,0,0,0 � 78⇣4 + 12⇣2H�2 + 4⇣3H�1 � 8H�4

+i⇡

"
4H�2,�1 � 4H�2,0 � 4H�1,�2 � 12H�1,�1,0 + 8H0,0,0 � 4⇣2H�1

+16⇣2H0 � 8H�3

#)

I = � 1

✏6
47

36

+
1

✏5


�8i⇡

3
+

8H�1

3
� 3H0

4

�

+
1

✏4

"
� 4H�1,�1 +H�1,0 +

H0,0

4
+

503⇣2
24

+ 4i⇡H�1 � i⇡H0 +H�2

#

+
1

✏3

"
2i⇡H0,0 + 2H�2,�1 � 2H�2,0 � 2H�1,0,0 +

21

4
H0,0,0 + 31i⇡⇣2

+
715⇣3
36

� 2i⇡H�2 � 33⇣2H�1 +
355⇣2H0

24
� 2H�3

#

+O(✏�2)
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x(k) N ×N ak
x ϵ

FB
a1,...,a15(s, t;D) =

∫ ∫ ∫
dDk1 dDk2 dDk3

(−k21)
a1 [−(p1 + p2 + k1)2]a2(−k22)

a3

× [−(k1 − p3)2]−a11 [−(p1 + k2)2]−a12 [−(k2 − p3)2]−a13

[−(p1 + p2 + k2)2]a4(−k23)
a5 [−(p1 + p2 + p3 + k2 − k3)2]a6 [−(p1 + k1)2]a7

× [−(p1 + k3)2]−a14 [−(k1 − k3)2]−a15

[−(k1 − k2)2]a8 [−(k2 − k3)2]a9 [−(k3 − p3)2]a10
,

FC
a1,...,a15(s, t;D) =

1

(iπD/2)3

∫ ∫ ∫
dDk1 dDk2 dDk3

(−k21)
a1 [−(p1 + p2 + k1)2]a2 [−(k1 + k3)2]a3

× [−(k1 + k2)2]−a11 [−(p1 + k3)2]−a12 [−(p1 + k2)2]−a13

[−(p1 + p2 + k1 + k2)2]a4 [−(k1 + k2 + k3)2]a5 [−(p1 + p2 + k1 + k2 + k3)2]a6

× [−(p3 + k1)2]−a14 [−(p3 + k3)2]−a15

(−k23)
a7(−k22)

a8 [−(p1 + k1)2]a9 [−(k1 + k2 + k3 − p3)2]a10
.

• unit leading singularities basis integral

I = s(s+ t)If [(l1 + p4)
4]



Application to four-particle 
scattering amplitude

2

terparts. This may be significant for investigations into
the possible finiteness of certain supergravity theories,
see e.g. [23].

It is important to ask what these intriguing loop-
integrand properties imply for the integrated answer.
One example where this connection has been made con-
crete, albeit at the conjectural level, has to do with the
class of functions expected to appear. Based on explic-
itly known results it is believed that scattering ampli-
tudes in N = 4 super Yang-Mills are given by functions
of uniform transcendental weight. [48] This is related
to a conjecture due to [15], which states that integrals
that can be written in terms of the d-log forms [16] men-
tioned above, and hence have constant leading singular-
ities, are given by uniform weight functions. We remark
that these concepts have already proven to be very useful
beyond maximally supersymmetric Yang-Mills theory [7]
in computing large classes of planar and non-planar loop
integrals relevant for collider physics.

On the other hand it is currently unknown what the
precise implications of the other fascinating integrand
properties mentioned above is for the integrated answer.
It goes without saying that explicit analytic results are
very important for making progress in this direction. To
date, the only known non-planar amplitudes in the max-
imally super Yang-Mills theory are the two-loop four-
point amplitudes [24–26], as well as a three-loop form
factor expressed that was computed via non-planar in-
tegrals [27]. In this paper, we compute for the fist time
the full three-loop four-gluon amplitudes in maximally
supersymmetric Yang-Mills theory.

The paper is organized as follows. We begin by ex-
plaining how we performed the calculation starting from
several di↵erent representations for the integrands of
the scattering amplitude. We review the color struc-
ture of the amplitude and explain how the result can
be parametrized by a small number of independent com-
ponents. Then, we discuss the structure of infrared di-
vergences and confirm a recent formula for contributions
depending in a non-trivial way on four particles. Having
removed the infrared divergences, we define a renormal-
ized finite part. The non-leading color terms are given in
terms of one weight four function at two loops, and two
weight six functions at three loops. Finally, we study the
Regge limit of our result. All our results are available in
electronic form as ancillary files.

FOUR-PARTICLE AMPLITUDES

The N = 4 super Yang-Mills four-gluon scattering am-
plitudes can be written perturbatively as

A(pi; ✏) = K
1
X

L=0

↵LA(L)(s, t; ✏). (1)

We introduced the expansion parameter ↵ =
4e�✏�Eg2/(4⇡)2�✏, where ✏ is the dimensional regu-
larization parameter, with D = 4� 2✏. Here the helicity
structure was absorbed into a permutation invariant
version K of the tree-level amplitudes. It is explicitly
given by

K = st i
�(8)(Q)�(4)(P )

h12ih23ih34ih41i , (2)

cf. [28] for details on the notation. Here we will only need
that A(L) depends on the Lorentz invariants s = 2p1 · p2
and t = 2p2 · p3. We also have u = 2p1 · p3 = �s� t.
The integrand for the three-loop four-particle scatter-

ing amplitude was investigated in a number of papers.
The main obstacle for computing the amplitudes were the
complicated three-loop non-planar Feynman integrals.
Analytic results for the latter are now available [29–31].
They were evaluated via the di↵erential method, with a
basis of integrals have unit leading singularities [7]. We
performed the necessary integral reductions to relate the
basis chosen in [31] to those of references [18, 20, 22, 23].
It is a non-trivial cross-check that we obtained the same
result for each representation.
In this way, we obtained an analytic answer for the am-

plitude in terms of harmonic polylogarithms [32]. The
answer has two interesting features that we would like
to highlight before discussing the result in more detail.
First, we show that, to all orders in ✏, the amplitude has
uniform transcendental weight. Second, the only rational
structures appearing are 1/s/t, 1/s/u and 1/t/u, corre-
sponding to di↵erent tree-level channels. This confirms,
in a highly non-trivial case, expectations based on the
properties of leading singularities [15, 18]. We also wish
to emphasize that although the latter very only analyzed
in four dimensions, we find the remarkable fact that the
uniform weight property is true to all orders in the ✏ ex-
pansion.

COLOR DECOMPOSITION

The amplitude A is a tensor in colour space. They can
be decomposed to all orders in terms of traces of funda-
mental colour generators of SU(Nc). We abbreviate

tr(T a1T a2T a3T a4) = tr(1234). (3)

For convenience we will suppress the arguments of the
functions. At any order in the coupling constant, the
amplitude can be expressed in terms of the following six
single and double trace color structures,

C1 = tr(1234) + tr(1432) C4 = tr(12)tr(34)

C2 = tr(1243) + tr(1342) C5 = tr(13)tr(24)

C3 = tr(1423) + tr(1324) C6 = tr(14)tr(23)

• expansion in coupling ↵ =
g2

4⇡2
(4⇡e��E)✏

• Mandelstam variables
s = (p1 + p2)

2 t = (p2 + p3)
2

• dimension D = 4� 2✏ p1

p3

p4

s=(p1+p2)^2

t=(p2+p3)^2

p2

p1

p2 p3

p4



Color decomposition
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3

Following [33], we further decompose the amplitude in
powers of N ,

A(L) =
3
X

�=1

0

@

bL
2 c
X

k=0

NL�2kA
(L,2k)
�

1

AC�

+
6
X

�=4

0

@

bL�1
2 c
X

k=0

NL�2k�1A
(L,2k+1)
�

1

AC� (4)

where A(L,0)
� are leading-order-in-N (planar) amplitudes,

and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding (3L+3)

color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [34],
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Taking into account similar relations [33] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

only the following components: A
(2,2)
1 at two loops, and

A
(3,2)
1 and A

(3,1)
4 at three loops. All other terms can be

obtained either by group theory relations, or by symme-
try. It is interesting to note that the remaining compo-
nents still satisfy constraints coming from group theory,

e.g.
P3

�=1 A
(2,2)
� = 0. A(2,2)

1 was determined in ref. [26].
In the present paper we compute the new components

A
(3,2)
1 and A

(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

Massless scattering amplitudes have infrared diver-
gences that are well understood. They can be mapped
to ultraviolet divergences of Wilson loops, with the latter
being controlled by renormalization group equations, see
e.g. [35, 36]. An amplitude for the scattering of massless,
SU(Nc) colour charged fields in dimensional regularisa-
tion can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in colour space we use bold letters.
The renormalization factor Z(pi, ✏) contains all infrared
divergences. It is given by the exponential

Z(pi, ✏) = Pexp

(
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.

In N = 4 super Yang-Mills, the renormalization of the
coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains
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Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6Ta6 .
Up to two loops [37, 38], the soft anomalous dimension

is given by a dipole formula, �(1) = �(2) = 0. Three
loop corrections to the latter are universal in any gauge
theory, as the matter dependent terms cancel [40]. They
can be split into a contributions connecting three and
four colour charged external fields, and we refer to the

latter as �(3)
3 and �
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
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• trace basis
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where A(L,0)
� are leading-order-in-N (planar) amplitudes,

and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding (3L+3)

color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [34],
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Taking into account similar relations [33] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

only the following components: A
(2,2)
1 at two loops, and

A
(3,2)
1 and A

(3,1)
4 at three loops. All other terms can be

obtained either by group theory relations, or by symme-
try. It is interesting to note that the remaining compo-
nents still satisfy constraints coming from group theory,

e.g.
P3

�=1 A
(2,2)
� = 0. A(2,2)

1 was determined in ref. [26].
In the present paper we compute the new components

A
(3,2)
1 and A

(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

Massless scattering amplitudes have infrared diver-
gences that are well understood. They can be mapped
to ultraviolet divergences of Wilson loops, with the latter
being controlled by renormalization group equations, see
e.g. [35, 36]. An amplitude for the scattering of massless,
SU(Nc) colour charged fields in dimensional regularisa-
tion can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in colour space we use bold letters.
The renormalization factor Z(pi, ✏) contains all infrared
divergences. It is given by the exponential

Z(pi, ✏) = Pexp

(
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.

In N = 4 super Yang-Mills, the renormalization of the
coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains

1

4

1
X

L=1

↵L

"

�
(L)
c

L2✏2
D0 � �

(L)
c

L✏
D+

4

L✏
�
(L)
J I+ 1

L✏
�(L)

#

.(8)

Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
ternal gluons). To three loops, they are given by
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6Ta6 .
Up to two loops [37, 38], the soft anomalous dimension

is given by a dipole formula, �(1) = �(2) = 0. Three
loop corrections to the latter are universal in any gauge
theory, as the matter dependent terms cancel [40]. They
can be split into a contributions connecting three and
four colour charged external fields, and we refer to the

latter as �(3)
3 and �
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4 , respectively. We extact the four-

gluon case from the n-particle formula [39],
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Here C = ⇣5 + 2⇣3⇣2, and S(x) is given by
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
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where A(L,0)
� are leading-order-in-N (planar) amplitudes,

and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding (3L+3)

color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [34],
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Taking into account similar relations [33] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

only the following components: A
(2,2)
1 at two loops, and

A
(3,2)
1 and A

(3,1)
4 at three loops. All other terms can be

obtained either by group theory relations, or by symme-
try. It is interesting to note that the remaining compo-
nents still satisfy constraints coming from group theory,

e.g.
P3

�=1 A
(2,2)
� = 0. A(2,2)

1 was determined in ref. [26].
In the present paper we compute the new components

A
(3,2)
1 and A

(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

Massless scattering amplitudes have infrared diver-
gences that are well understood. They can be mapped
to ultraviolet divergences of Wilson loops, with the latter
being controlled by renormalization group equations, see
e.g. [35, 36]. An amplitude for the scattering of massless,
SU(Nc) colour charged fields in dimensional regularisa-
tion can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in colour space we use bold letters.
The renormalization factor Z(pi, ✏) contains all infrared
divergences. It is given by the exponential

Z(pi, ✏) = Pexp

(
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)

, (7)

where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.

In N = 4 super Yang-Mills, the renormalization of the
coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains
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Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
ternal gluons). To three loops, they are given by
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6Ta6 .
Up to two loops [37, 38], the soft anomalous dimension

is given by a dipole formula, �(1) = �(2) = 0. Three
loop corrections to the latter are universal in any gauge
theory, as the matter dependent terms cancel [40]. They
can be split into a contributions connecting three and
four colour charged external fields, and we refer to the

latter as �(3)
3 and �
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4 , respectively. We extact the four-

gluon case from the n-particle formula [39],
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
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Infrared structure (1)

corrections at 3 loops

2 loops: dipole formula
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Following [35], we further decompose the amplitude in
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where A
(L,0)
� are leading-order-in-Nc (planar) ampli-

tudes, and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding

(3L+ 3) color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [36],
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Taking into account similar relations [35] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

the following components: A(2,2)
1 at two loops, and A

(3,2)
1

and A
(3,1)
4 at three loops. All other terms can be ob-

tained either by group theory relations, or by symmetry.
It is interesting to note that the remaining components
still satisfy constraints coming from group theory, e.g.
P3

�=1 A
(2,2)
� = 0. A

(2,2)
1 was determined in ref. [26]. In

the present paper we compute the new components A(3,2)
1

and A
(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

The structure of infrared divergences of massless scat-
tering amplitudes is well understood. They can be
mapped to ultraviolet divergences of Wilson loops, with
the latter being controlled by renormalization group
equations, see e.g. [37, 38]. An amplitude for the scat-
tering of massless, SU(Nc) color charged fields in dimen-
sional regularisation can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) , (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in color space we use bold letters.
The factor Z(pi, ✏) contains all infrared divergences. It is
given by the exponential
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.
In N = 4 super Yang-Mills, the renormalization of the

coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains
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Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
ternal gluons). To three loops [39–41], they read
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6T a6 .
Up to two loops [42, 43], the soft anomalous dimen-

sion is given by a dipole formula, �(1) = �(2) = 0.
Three loop corrections to the latter are universal in any
gauge theory, as the matter dependent terms cancel [45].
They can be split into a contributions connecting three
and four color charged external fields, and we refer to

the latter as �
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tions were obtained recently in ref. [44] for the case of
n-particle scattering. Restricting the general formula to
the case of four-particle scattering we find
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infrared divergences controlled by RG equation for Wilson lines
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Following [35], we further decompose the amplitude in
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where A
(L,0)
� are leading-order-in-Nc (planar) ampli-

tudes, and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding

(3L+ 3) color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [36],
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Taking into account similar relations [35] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

the following components: A(2,2)
1 at two loops, and A

(3,2)
1

and A
(3,1)
4 at three loops. All other terms can be ob-

tained either by group theory relations, or by symmetry.
It is interesting to note that the remaining components
still satisfy constraints coming from group theory, e.g.
P3

�=1 A
(2,2)
� = 0. A

(2,2)
1 was determined in ref. [26]. In

the present paper we compute the new components A(3,2)
1

and A
(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

The structure of infrared divergences of massless scat-
tering amplitudes is well understood. They can be
mapped to ultraviolet divergences of Wilson loops, with
the latter being controlled by renormalization group
equations, see e.g. [37, 38]. An amplitude for the scat-
tering of massless, SU(Nc) color charged fields in dimen-
sional regularisation can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) , (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in color space we use bold letters.
The factor Z(pi, ✏) contains all infrared divergences. It is
given by the exponential

Z(pi, ✏) = Pexp
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.
In N = 4 super Yang-Mills, the renormalization of the

coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains
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Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
ternal gluons). To three loops [39–41], they read
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6T a6 .
Up to two loops [42, 43], the soft anomalous dimen-

sion is given by a dipole formula, �(1) = �(2) = 0.
Three loop corrections to the latter are universal in any
gauge theory, as the matter dependent terms cancel [45].
They can be split into a contributions connecting three
and four color charged external fields, and we refer to

the latter as �
(3)
3 and �
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4 , respectively. These correc-

tions were obtained recently in ref. [44] for the case of
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in N=4 SYM integral can be done explicitly
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where A
(L,0)
� are leading-order-in-Nc (planar) ampli-

tudes, and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding

(3L+ 3) color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [36],
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Taking into account similar relations [35] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

the following components: A(2,2)
1 at two loops, and A

(3,2)
1

and A
(3,1)
4 at three loops. All other terms can be ob-

tained either by group theory relations, or by symmetry.
It is interesting to note that the remaining components
still satisfy constraints coming from group theory, e.g.
P3

�=1 A
(2,2)
� = 0. A

(2,2)
1 was determined in ref. [26]. In

the present paper we compute the new components A(3,2)
1

and A
(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

The structure of infrared divergences of massless scat-
tering amplitudes is well understood. They can be
mapped to ultraviolet divergences of Wilson loops, with
the latter being controlled by renormalization group
equations, see e.g. [37, 38]. An amplitude for the scat-
tering of massless, SU(Nc) color charged fields in dimen-
sional regularisation can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) , (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in color space we use bold letters.
The factor Z(pi, ✏) contains all infrared divergences. It is
given by the exponential
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.
In N = 4 super Yang-Mills, the renormalization of the

coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains
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Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6T a6 .
Up to two loops [42, 43], the soft anomalous dimen-

sion is given by a dipole formula, �(1) = �(2) = 0.
Three loop corrections to the latter are universal in any
gauge theory, as the matter dependent terms cancel [45].
They can be split into a contributions connecting three
and four color charged external fields, and we refer to

the latter as �
(3)
3 and �
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4 , respectively. These correc-

tions were obtained recently in ref. [44] for the case of
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Following [35], we further decompose the amplitude in
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where A
(L,0)
� are leading-order-in-Nc (planar) ampli-

tudes, and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding

(3L+ 3) color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [36],
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Taking into account similar relations [35] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

the following components: A(2,2)
1 at two loops, and A

(3,2)
1

and A
(3,1)
4 at three loops. All other terms can be ob-

tained either by group theory relations, or by symmetry.
It is interesting to note that the remaining components
still satisfy constraints coming from group theory, e.g.
P3

�=1 A
(2,2)
� = 0. A

(2,2)
1 was determined in ref. [26]. In

the present paper we compute the new components A(3,2)
1

and A
(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

The structure of infrared divergences of massless scat-
tering amplitudes is well understood. They can be
mapped to ultraviolet divergences of Wilson loops, with
the latter being controlled by renormalization group
equations, see e.g. [37, 38]. An amplitude for the scat-
tering of massless, SU(Nc) color charged fields in dimen-
sional regularisation can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) , (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in color space we use bold letters.
The factor Z(pi, ✏) contains all infrared divergences. It is
given by the exponential

Z(pi, ✏) = Pexp
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.
In N = 4 super Yang-Mills, the renormalization of the

coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains
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Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6T a6 .
Up to two loops [42, 43], the soft anomalous dimen-

sion is given by a dipole formula, �(1) = �(2) = 0.
Three loop corrections to the latter are universal in any
gauge theory, as the matter dependent terms cancel [45].
They can be split into a contributions connecting three
and four color charged external fields, and we refer to

the latter as �
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3 and �
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Infrared structure (2)
corrections at 3 loops [Almelid, Duhr, Gardi, 2015]

3

Following [33], we further decompose the amplitude in
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where A(L,0)
� are leading-order-in-N (planar) amplitudes,

and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding (3L+3)

color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [34],
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Taking into account similar relations [33] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

only the following components: A
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1 at two loops, and
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1 and A
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obtained either by group theory relations, or by symme-
try. It is interesting to note that the remaining compo-
nents still satisfy constraints coming from group theory,
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1 was determined in ref. [26].
In the present paper we compute the new components
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1 and A
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4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

Massless scattering amplitudes have infrared diver-
gences that are well understood. They can be mapped
to ultraviolet divergences of Wilson loops, with the latter
being controlled by renormalization group equations, see
e.g. [35, 36]. An amplitude for the scattering of massless,
SU(Nc) colour charged fields in dimensional regularisa-
tion can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in colour space we use bold letters.
The renormalization factor Z(pi, ✏) contains all infrared
divergences. It is given by the exponential
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.

In N = 4 super Yang-Mills, the renormalization of the
coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains
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Here �c is the cusp anomalous dimension and �J is the
collinear anomalous dimensions (associated with the ex-
ternal gluons). To three loops, they are given by
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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with sij = 2pi · pj . The color operators act according to
Ta5

1 T a1 = �ifa5a1a6Ta6 .
Up to two loops [37, 38], the soft anomalous dimension

is given by a dipole formula, �(1) = �(2) = 0. Three
loop corrections to the latter are universal in any gauge
theory, as the matter dependent terms cancel [40]. They
can be split into a contributions connecting three and
four colour charged external fields, and we refer to the

latter as �(3)
3 and �

(3)
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gluon case from the n-particle formula [39],
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Here C = ⇣5 + 2⇣3⇣2, and S(x) is given by
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
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Following [33], we further decompose the amplitude in
powers of N ,
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where A(L,0)
� are leading-order-in-N (planar) amplitudes,

and A
(L,k)
� , k = 1, · · · , L, are subleading, yielding (3L+3)

color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [34],
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Taking into account similar relations [33] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A(L,0)
� , one only needs

only the following components: A
(2,2)
1 at two loops, and

A
(3,2)
1 and A
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4 at three loops. All other terms can be

obtained either by group theory relations, or by symme-
try. It is interesting to note that the remaining compo-
nents still satisfy constraints coming from group theory,
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1 was determined in ref. [26].
In the present paper we compute the new components

A
(3,2)
1 and A

(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

Massless scattering amplitudes have infrared diver-
gences that are well understood. They can be mapped
to ultraviolet divergences of Wilson loops, with the latter
being controlled by renormalization group equations, see
e.g. [35, 36]. An amplitude for the scattering of massless,
SU(Nc) colour charged fields in dimensional regularisa-
tion can be written as

A(pi, ✏) = Z(pi, ✏)Af (pi, ✏) (6)

where Af (pi) represents a finite hard amplitude. To in-
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where ↵(µ2) is the renormalised coupling constant, and
� is the soft anomalous dimension.

In N = 4 super Yang-Mills, the renormalization of the
coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
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Here �c is the cusp anomalous dimension and �J is the
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The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
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We conclude that the general form of the non-dipole correction to the soft anomalous dimen-
sion for n coloured lines is given by
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where C is a constant and F is a function of two CICRs. Note that the contribution proportional
to the constant C is present starting from the three-line case, n = 3. Both C and F are independent
of the colour degrees of freedom. The terms in this sum are not all independent, because of the
antisymmetry of the structure constants and the Jacobi identity. We emphasise that C and F are
independent of the number of legs n. We can therefore determine these functions by considering
the simplest case of four Wilson lines, D(3)

4 .
In organising the calculation we made use of non-Abelian exponentiation, and computed webs,

namely diagrams that contribute directly to the exponent. A web can be either an individual con-
nected diagram, as in Fig. 1, or a set of non-connected diagrams which are related by permuting the
order of gluon attachments to the Wilson lines [38–42]; representative diagrams from such webs
are shown in Fig. 2. In either of these cases, the contribution to D(3)

4 is associated with fully con-
nected colour factors. The classification of webs connecting four and three Wilson lines was done
in Ref. [42].

Another important element in organising the calculation is colour conservation. The anoma-
lous dimension Gn is an operator in colour space that acts on the hard amplitude, which is a colour
singlet and must therefore satisfy [8]
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This colour conservation constraint is implicit in Eqs. (2.6) and (4.1). When computing D(3)
4 one

may form a colour basis by systematically eliminating T4 in favour of Ti, 1  i  3, thereby re-
ducing all four-line colour factors to three-line ones. This way colour conservation relates between
diagrams connecting a different number of Wilson lines: the diagrams in Figs. 3 and 4, which
connect three or two Wilson lines, contribute together with those connecting four lines. Let us
see this explicitly. The sum of all three-loop webs connecting four lines can be cast into the Bose
symmetric form
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(4.3)

where the kinematic function H4 satisfies the following permutation properties: H4[(1,2),(3,4)] =
�H4[(2,1),(3,4)] = H4[(3,4),(1,2)]; this function depends on logarithms of cusp angles as well
as on non-trivial functions of CICRs. Using colour conservation to eliminate T4 in favour of the

7

for n=4 points we extract

H: harmonic polylogarithms
x = t/s

u = �s� t > 0

IR singularities at three-loops Einan Gardi
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Figure 1: All connected 3-loop webs connecting four Wilson lines.
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Figure 2: Representative non-connected 3-loop diagrams of webs connecting four Wilson lines.

and depends on the kinematics via conformally-invariant cross ratios (CICRs),

ri jkl ⌘
(�si j)(�skl)

(�sik)(�s jl)
=

gi j gkl

gik g jl
, (2.8)

which are invariant under a rescaling of any of the momenta. In the following we report on the
calculation of the three-loop function D(3)

n
��

ri jkl
 �

.
With the exception of hard collinear singularities (gJi(as) in Eq. (2.6)), one may compute

the soft anomalous dimension Gn ({pi} ,l ) to any order through the renormalization of the soft
function in Eq. (2.3): in dimensional regularization, loop corrections to the soft function are scale-
less integrals, which vanish in the absence of a cutoff. Hence, one may directly infer the infrared
poles in e from the ultraviolet ones. This calculation strategy has marked advantages over the
alternative of extracting the infrared poles from an amplitude, since one never needs to evaluate
finite corrections, and one may make direct use of the known iterative structure of renormalization
along with the exponentiation properties of Wilson line correlators [35–42].

We note that D(3)
n is independent of the details of the underlying theory and completely de-

termined by soft gluon interactions. In particular, this implies that D(3)
n is the same in QCD and

in N = 4 Super Yang-Mills, and it is therefore expected to be a pure polylogarithmic function of
weight five. Its functional form has been constrained by considering collinear limits and the Regge
limit [14–22], but despite progress in understanding these limits it remained unclear whether three-
loop corrections to the dipole formula are in fact present. The situation changed with the comple-
tion of the direct computation of D(3)

n [1] on which we report in the present talk.

3

predicts infrared divergences of any massless 4-particle amplitude



finite part
• infrared-finite part

4

Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.

H = lim
✏!0

Af . (15)

We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given
by a remarkably simple formula that was conjectured in
[9, 10] and proven in [11],
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to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
e�cients in the large Nc expansion. The two-loop func-

tion H
(2,2)
1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
(3,2)
1 and

H
(3,1)
4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops

w8a |↵3 =N3
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by
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where the sum includes the following operators,
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T3 � 4⇣2⇣3T . (21)

It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.

• planar contribution given by simple formula to all orders
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pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
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to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
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Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by
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It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.

[conjecture: Bern, Dixon, Smirnov, 2005]
[proof: Drummond, JMH, Korchemsky, Sokatchev, 2008]

• independent non-planar contributions
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continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.
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structure of our amplitude we can inspect in detail the
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at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by
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where the sum includes the following operators,
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It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.

H = lim
✏!0

Af . (15)

We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given
by a remarkably simple formula that was conjectured in
[9, 10] and proven in [11],
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to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
e�cients in the large Nc expansion. The two-loop func-

tion H
(2,2)
1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
(3,2)
1 and

H
(3,1)
4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by

H =
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It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.

H = lim
✏!0

Af . (15)

We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given
by a remarkably simple formula that was conjectured in
[9, 10] and proven in [11],
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to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
e�cients in the large Nc expansion. The two-loop func-

tion H
(2,2)
1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
(3,2)
1 and

H
(3,1)
4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops

w8a |↵3 =N3
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by

H =
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where the sum includes the following operators,

O2,1 =� 1

8
⇣3T

2 , (19)

O3,2 =i⇡
11

24
⇣3[[S,T],T] , (20)

O3,1 =i⇡
1

16
⇣4 (3[S,T]T+ 58[[S,T],T])

+
11

6
⇣2⇣3

�

3[S,T]T+ 2[[S,T],T]� [S2,T]
�

+

✓

1

4
⇣5 �

1

24
⇣2⇣3

◆

T3 � 4⇣2⇣3T . (21)

It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.
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in octet channel we find
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.

H = lim
✏!0

Af . (15)

We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given
by a remarkably simple formula that was conjectured in
[9, 10] and proven in [11],
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to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
e�cients in the large Nc expansion. The two-loop func-

tion H
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1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
(3,2)
1 and

H
(3,1)
4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by
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It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.
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We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
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to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
e�cients in the large Nc expansion. The two-loop func-
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1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
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1 and
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4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by

H =
X

k,q

↵k
⇣

log
s

t

⌘q
Ok,qH(0) +O(1) , (18)

where the sum includes the following operators,

O2,1 =� 1

8
⇣3T

2 , (19)

O3,2 =i⇡
11

24
⇣3[[S,T],T] , (20)

O3,1 =i⇡
1

16
⇣4 (3[S,T]T+ 58[[S,T],T])

+
11

6
⇣2⇣3

�

3[S,T]T+ 2[[S,T],T]� [S2,T]
�

+

✓

1

4
⇣5 �

1

24
⇣2⇣3

◆

T3 � 4⇣2⇣3T . (21)

It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.
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Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.

H = lim
✏!0

Af . (15)

We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given
by a remarkably simple formula that was conjectured in
[9, 10] and proven in [11],
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to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
e�cients in the large Nc expansion. The two-loop func-

tion H
(2,2)
1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
(3,2)
1 and

H
(3,1)
4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops
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The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
sult of [52] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
Let us discuss in more detail the Regge limit of the

finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)2 and S = (T1 +
T2)2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by
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It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.

4

Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = �s� t > 0.
Given eq. (8) we can obtain explicitly all the infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.

H = lim
✏!0

Af . (15)

We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given
by a remarkably simple formula that was conjectured in
[9, 10] and proven in [11],

X

L

↵LH
(L,0)
1 = H

(0,0)
1 exp

n

� Nc�c(↵)

2
log

�s

µ2
log

�t

µ2

��J(↵)

2



log
�s

µ2
+ log

�t

µ2

�

+ C(↵)
o

, (16)

to all loop orders. The coupling dependence enters only
through kinematic-independent constants.

In the present paper we evaluated the non-leading co-
e�cients in the large Nc expansion. The two-loop func-

tion H
(2,2)
1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
(3,2)
1 and

H
(3,1)
4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s � t. In the following, we work
at leading power in s/t, and set µ2 = �t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a ⇠ sw8a , with the gluon Regge trajectory
at three loops

w8a |↵3 =N3
c



11⇣4
48

1

✏
+

5

24
⇣2⇣3 +

1

4
⇣5 +O(✏)

�

+Nc



⇣2
4

1

✏3
� 15⇣4

16

1

✏
� 77

4
⇣2⇣3 +O(✏)

�

. (17)

The leading color term is well known [50, 51]. At sub-
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in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the re-
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successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10
channel [53].
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It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T3 terms only.

CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ✏ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.

color operators T = (T2 +T3)
2S = (T1 +T2)
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Conclusion
• milestone in perturbative QFT:                   

full 3-loop four-gluon scattering amplitude

• independent verification of 3-loop soft 
anomalous dimension matrix                 
predicts infrared divergences of any 
massless four-particle amplitude

• non-trivial data point for the study of 
non-planar scattering amplitudes


