Detection of B-mode Polarization at Degree Scales using BICEP2

John Kovac for The BICEP2 Collaboration – Strings 2014, June 23

BICEP2 I: Detection of B-mode Polarization at Degree Angular Scales

BICEP2 Collaboration - P. A. R. Ade,¹ R. W. Aikin,² D. Barkats,³ S. J. Benton,⁴ C. A. Bischoff,⁵ J. J. Bock,^{2,6} J. A. Brevik,² I. Buder,⁵ E. Bullock,⁷ C. D. Dowell,⁶ L. Duband,⁸ J. P. Filippini,² S. Fliescher,⁹ S. R. Golwala,² M. Halpern,¹⁰ M. Hasselfield,¹⁰ S. R. Hildebrandt,^{2,6} G. C. Hilton,¹¹ V. V. Hristov,² K. D. Irwin,^{12,13,11} K. S. Karkare,⁵ J. P. Kaufman,¹⁴ B. G. Keating,¹⁴ S. A. Kernasovskiy,¹² J. M. Kovac,^{5,*} C. L. Kuo,^{12,13}
E. M. Leitch,¹⁵ M. Lueker,² P. Mason,² C. B. Netterfield,^{4,16} H. T. Nguyen,⁶ R. O'Brient,⁶ R. W. Ogburn IV,^{12,13}
A. Orlando,¹⁴ C. Pryke,^{9,7,†} C. D. Reintsema,¹¹ S. Richter,⁵ R. Schwarz,⁹ C. D. Sheehy,^{9,15} Z. K. Staniszewski,^{2,6}
R. V. Sudiwala,¹ G. P. Teply,² J. E. Tolan,¹² A. D. Turner,⁶ A. G. Vieregg,^{5,15} C. L. Wong,⁵ and K. W. Yoon^{12,13}

We report results from the BICEP2 experiment, a Cosmic Microwave Background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around $\ell \sim 80$. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor (TES) 150 GHz bolometers each with temperature sensitivity of $\approx 300 \ \mu K_{\text{CMB}} \sqrt{s}$. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square degrees was observed to a depth of 87 nK-degrees in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations and results. We find an excess of B-mode power over the base lensed-ACDM expectation in the range $30 < \ell < 150$, inconsistent with the null hypothesis at a significance of $> 5\sigma$. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power $\sim 5-10 \times$ smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross-correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ . The observed B-mode power spectrum is well-fit by a lensed- Λ CDM + tensor theoretical model with tensor/scalar ratio $r = 0.20^{+0.07}_{-0.05}$, with r = 0 disfavored at 7.0 σ . Accounting for the contribution of foreground dust will shift this value downward by an amount which will be better constrained with upcoming datasets.

arXiv:1403.3985 / PRL June 19

The BICEP2 Postdocs

BICEP2 Winterovers

2010

2011

2012

The BICEP2 Graduate Students

Justus Brevik

Chris Sheehy Sarah

Grant Teply

Jamie Tolan

launching Cosmology's greatest wild goose chase

The Search for Inflationary B-Modes

Andrew Lange Caltech Marvin L. Goldberger Professor of Physics 1957 - 2010

How do B-modes test Inflation?

CMB polarization: scattering from sound waves

E-Mode Polarization Pattern

Density Wave

E-modes 2002: DASI first detects polarization of CMB

The long search for Inflationary B-modes

In simple inflationary gravitational wave models the

tensor-to-scalar ratio r

is the only parameter to the B-mode spectrum.

Until recently only upper limits from searches for Inflationary B-modes

Best previous limit on r from BICEP1:

r < 0.7 (95% CL)

Note at high multipoles lensing B-mode dominant.

SPT x-corr: lower limits on lensing B-mode from cross correlation using the CIB

B-modes from the ground

- Deep, Concentrated coverage
- Foreground avoidance (limited frequency)
- Systematic control with in-situ calibration
- Large detector count, rapid technology cycle
- Relentless observing & large number of null tests

ightarrow powerful recipe for high-confidence initial detection

BICEP2 Experimental Concept

Mass-produced superconducting detectors from JPL

Transition edge sensor

Microstrip filters

South Pole CMB telescopes

NSF's South Pole Station: A popular place with CMB Experimentalists!

Dry, stable atmosphere and 24h coverage of "Southern Hole".

Atacama, Greenland(?) excellent alternatives offering different coverage

South Pole: "Relentless Observing"

BICEP2 3-year Data Set

John Kovac for The Bicep2 Collaboration

sensitivity [nK]

Total

Cosmic Microwave Background

The Bicep2 Collaboration

Declination [deg.]

B-mode Map vs. Simulation

 Analysis "calibrated" using lensed-ΛCDM+noise simulations.

The simulations repeat the full observation at the timestream level - including all filtering operations.

- We perform various filtering operations: Use the sims to correct for these
- Also use the sims to derive the final uncertainties (error bars)

BICEP2 B-mode Power Spectrum

Temperature and Polarization Spectra

Check Systematics: Jackknifes

TABLE 1 Jackknife PTE values from χ^2 and χ (sum-of-deviation) Tests

Jackknife Bandpowers Bandpowers Bandpowers Bandpowers

	1-5 X	$1 = J \chi$	1-5 X	1-9 X	_
					_
Deck jackkn	ife				
EE	0.046	0.030	0.164	0.299	-
BB	0.774	0.329	0.240	0.082	
EB	0.337	0.643	0.204	0.267	
Scan Dir jac	kknife				
EE	0.483	0.762	0.978	0.938	
BB	0.531	0.573	0.896	0.551	_
ED	0.696	0.800	0.725	0.890	
Tag Split jac	kknife				
EE	0.541	0.377	0.916	0.938	
BB FR	0.902	0.992	0.449	0.585	
		0.007	0.000	0.010	
Tile jackknif	ie o o o o				
EE	0.004	0.010	0.000	0.002	
EB	0.172	0.419	0.962	0.790	
Dhace incluin					
rnase jackki	me 0.672	0.400	0.126	0.220	
BB	0.673	0.409	0.126	0.339	
EB	0.529	0.577	0.840	0.659	
Mux Col iac	kknife			1	
FF	0.812	0.587	0.196	0 204	R /
BB	0.826	0.972	0.293	0.283	
EB	0.866	0.968	0.876	0.697	
Alt Deck jac	kknife				
EE	0.004	0.004	0.070	0.236	
BB	0.397	0.176	0.381	0.086	
EB	0.150	0.060	0.170	0.291	
Mux Row ja	ckknife				
EE	0.052	0.178	0.653	0.739	×
BB	0.345	0.361	0.032	0.008	
EB	0.529	0.226	0.024	0.048	
Tile/Deck ja	ckknife				
EE	0.048	0.088	0.144	0.132	_ /
BB	0.908	0.840	0.629	0.269	R/
0.1	0.030	0.134	0.391	0.391	` X /
Focal Plane	inner/outer jac	kknife			<u> </u>
EE	0.230	0.597	0.022	0.090	
EB	0.216	0.531	0.046	0.092	
Tile toro for the	om instant				//
The top/bott	om jackknife	0.247	0.450	0.700	
RR	0.289	0.347	0.459	0.599	
EB	0.545	0.683	0.902	0.932	
Tile inner/ou	ter jackknife				1
EE	0.727	0.522	0.128	0.485	
BB	0.255	0.086	0.421	0.485	- /
EB	0.465	0.737	0.208	0.168	
Moon jackk	nife				
EF	0.499	0.689	0.481	0.679	
BB	0.144	0.287	0.898	0.858	
EB	0.289	0.359	0.531	0.307	
A/B offset b	est/worst				
EE	0.317	0.311	0.868	0.709	
BB	0.114	0.064	0.307	0.094	
EB	0.589	0.872	0.599	0.790	

John Kovac for The Bicep2 Collaboration

14 jackknife tests applied to 3 spectra, 4 statistics

Splits the 4 boresight rotations

Amplifies differential pointing in comparison to fully added data. Important check of deprojection. See later slides.

Splits by time

Checks for contamination on long ("Temporal Split") and short ("Scan Dir") timescales. Short timescales probe detector transfer functions.

Splits by channel selection

Checks for contamination in channel subgroups, divided by focal plane location, tile location, and readout electronics grouping

Splits by possible external contamination

Checks for contamination from ground-fixed signals, such as polarized sky or magnetic fields, or the moon

Splits to check intrinsic detector properties

Checks for contamination from detectors with best/ worst differential pointing. "Tile/dk" divides the data by the orientation of the detector on the sky.

Systematics paper nearly ready – and see Chris Sheehy poster

Calibration Measurements

For instance...

Far field beam mapping

individual detectors Detailed description in companion Instrument Paper

Systematics beyond Beam imperfections

All systematic effects that we could imagine were investigated!

We find with high confidence that the apparent signal *cannot be explained* by instrumental systematics!

Cross Correlation with BICEP1

Though less sensitive, BICEP1 applied **different technology** (systematics control) and **multiple colors** (foreground control) to the **same sky**.

Cross-correlations with both colors are **consistent** with the B2 auto spectrum

Cross with BICEP1₁₀₀ shows $\sim 3\sigma$ detection of BB power

BICEP2: Phased antenna array and TES readout 150 GHz

BICEP1: Feedhorns and NTD readout 150 and 100 GHz

Spectral Index of the B-mode Signal

Cross Spectra between 3 Experiments

BICEP2 auto spectrum compatible with B2xB1c cross spectrum $\sim 3\sigma$ evidence of excess power in the cross spectrum

Additionally form cross spectrum with 2 years of data from Keck Array, the successor to BICEP2 Excess power is also evident in the B2xKeck cross spectrum

Cross spectra: Powerful additional evidence against a systematic origin of the apparent signal

Constraint on Tensor-to-scalar Ratio r

Within this simplistic model we find:

r = 0.2 with uncertainties dominated by sample variance

PTE of fit to data: 0.9

 \rightarrow model is perfectly acceptable fit to the data

r = 0 ruled out at 7.0σ

Substantial excess power in the region where the inflationary gravitational wave signal is expected to peak

Find the most likely value of the tensor-to-scalar ratio r

Apply "direct likelihood" method, uses:

lensed- Λ CDM + noise simulations weighted version of the 5 bandpowers B-mode sims scaled to various levels of r (n_T=0)

Polarized Dust Foreground Projections

The BICEP2 region is chosen to have lowest foreground emission based on available pre-Planck models.

Use models of polarized dust emission to estimate foregrounds. (default parameter values)

Dust model auto spectra are well below observed signal level.

Cross spectra are lower, though this could indicate limitations of models.

Constraint on r under Foreground Projections

"Probability that each of these models reflect reality hard to assess" – uncertainties could go in either direction, but large enough to equal entire signal.

r = 0.15 to 0.19 based on models at default values.

Dust contribution is largest in the first bandpower. Deweighting this bin would lead to less deviation from our base result. Adjust likelihood curve by subtracting the dust projection auto and cross spectra from our bandpowers:

Conclusions circa March 17th

http://www.bicepkeck.org

John Kovac for The Bicep2 Collaboration

Deepest polarization maps yet made: 87nK-deg / 3nK total

Power spectra perfectly consistent with lensed-ACDM except:

5.2σ excess in the B-mode spectrum at low multipoles!

Extensive studies and jackknife test **strongly argue against systematics** as the origin

Foregrounds do not appear to be a large fraction of the signal:

- \rightarrow foreground projections
- $\rightarrow\,$ lack of cross correlations
- \rightarrow CMB-like spectral index
- \rightarrow B-mode distribution / spectrum

With no foreground subtraction, constraint on tensor-to-scalar ratio r in simple inflationary gravitational wave model:

 $r = 0.20^{+0.07}_{-0.05}$ r = 0 is ruled out at 7.0 σ . This shifts down depending on foreground level.

Developments Since March...

- Intense media and science community interest...
- Many early instrumental queries... mostly seem to have faded
- Concerns seem to have boiled down to:

-Spectral index constraint includes lensing signal – true – but relatively small effect -Polarized dust foreground may be stronger than previously projected...

• In May, 4 new papers on dust polarization appeared from Planck

-These specifically mask out low foreground regions like ours (due to "non small systematics and not dust dominated")

-Trend to higher polarization in low dust regions. 4% mode, but > 10% in some regions

- PRL final version of paper last week
 - B-mode detection + analysis are secure. Uncertainty on interpretation has increased.
 "Is it all dust?" Getting new data more important than ever.
- Keck 2014 is running right now with 2 receivers at 100GHz

-Sensitivity of BICEP1 already surpassed, soon will tighten spectral index constraint

• Meanwhile many other experiments in the running:

-SPTpol (same patch), Polarbear, ACTpol, ABS, Spider, EBEX, new Planck paper soon

-Planck + BICEP2 plans for joint map analysis -- both sides enthusiastic!

 \rightarrow Most powerful way to advance the science is more data, all used together.