Spread of entanglement and chaos

Márk Mezei (Princeton)

MM, Stanford [to appear]; MM [to appear]; Casini, Liu, MM [1509.05044]; Cotler, Hertzberg, MM, Mueller [to appear]

Strings 2016

Outline

Entanglement generation and chaos

- Two velocities
- Bounds

Data on entanglement growth

- Holographic results
- Spin chain results

Interpretation and benchmarking

- Operator growth model
- Free streaming, free scalar theory

Summary and open questions

Outline

Entanglement generation and chaos

- Two velocities
- Bounds

Data on entanglement growth

- Holographic results
- Spin chain results

Interpretation and benchmarking

- Operator growth model
- Free streaming, free scalar theory

Summary and open questions

Entanglement generation in global quenches

Global quench:

- Thermalization in a pure state $|\psi(t)
 angle$
- Start with QFT in a short-range entangled state at t=0. (E.g. inject uniform energy density or change the Hamiltonian)
- One-point functions reach thermal value $t_{
 m loc} \sim 1/T$
- EE (similarly to $\langle \phi(R)\,\phi(0)\rangle$) take $t_s\sim R$ to saturate to thermal value
- Good diagnostic of thermalization is how close $\rho_A (|\psi(t)\rangle)$ is to $\operatorname{Tr}_{\bar{A}} e^{-\beta(E) H}$

$$S_0 = \frac{A_{\Sigma}}{\delta^{d-2}} + \dots$$

Typical point inside is unentangled with outside

 $S_{
m eq} = s_{
m th} \, V_A + \dots$ Typical point inside is entangled with outside

Entanglement generation in global quenches

Global quench:

- Thermalization in a pure state $|\psi(t)
 angle$
- Start with QFT in a short-range entangled state at t=0. (E.g. inject uniform energy density or change the Hamiltonian)
- One-point functions reach thermal value $t_{
 m loc} \sim 1/T$
- EE (similarly to $\langle \phi(R)\,\phi(0)\rangle$) take $t_s\sim R$ to saturate to thermal value
- Good diagnostic of thermalization is how close $\rho_A \left(|\psi(t)\rangle \right)$ is to $\operatorname{Tr}_{\bar{A}} e^{-\beta(E) H}$

What is the time evolution of EE?

- 2d: numerics, CFT techniques [Huse, Kim; MM, Stanford; Calabrese, Cardy]
- d>2: holography, free field theory [Hartman, Maldacena; Liu, Suh; Cotler, Hertzberg, MM, Mueller]

Monotonicity of relative entropy combined with emergent light cones

- v_B cone at finite temperature in chaotic systems
- Monotonicity of relative entropy for subsystems
- Tsunami bound [Afkhami-Jeddi, Hartman]

 $S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$

Monotonicity of relative entropy combined with emergent light cones

- v_B cone at finite temperature in chaotic systems
- Monotonicity of relative entropy for subsystems
- Tsunami bound [Afkhami-Jeddi, Hartman]

 $S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$

• Taking t' = 0: $S[A(t)] \le s_{\text{th}} V[\text{tsunami}(t)]$

Monotonicity of relative entropy combined with emergent light cones

- v_B cone at finite temperature in chaotic systems
- Monotonicity of relative entropy for subsystems
- Tsunami bound [Afkhami-Jeddi, Hartman]

 $S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$

- Taking t' = 0: $S[A(t)] \le s_{\text{th}} V[\text{tsunami}(t)]$
- Consequences: $v_E \le v_B$, $t_S \ge \frac{R_{\text{insc}}}{v_B}$

Monotonicity of relative entropy combined with emergent light cones

- v_B cone at finite temperature in chaotic systems
- Monotonicity of relative entropy for subsystems
- Tsunami bound [Afkhami-Jeddi, Hartman]

 $S[A(t)] \le S[A'(t')] + s_{\rm th} \left(V[A(t)] - V[A'(t')] \right)$

- Taking t' = 0: $S[A(t)] \le s_{\text{th}} V[\text{tsunami}(t)]$
- Consequences: $v_E \le v_B$, $t_S \ge \frac{R_{\text{insc}}}{v_B}$

Proposed inequality

 $\partial_t S[A(t)] \le v_E \, s_{\rm th} \, A_{\Sigma}$

- Rigorous versions exist for lattice systems
- Can be proven in holography [MM]

Combination of the two bounds captures many of the essential details of entanglement growth in chaotic systems.

Outline

Entanglement generation and chaos

- Two velocities
- Bounds

Data on entanglement growth

- Holographic results
- Spin chain results

Interpretation and benchmarking

- Operator growth model
- Free streaming, free scalar theory

Summary and open questions

Holographic models of quenches

- Dual of Cardy-Calabrese boundary state is eternal BH with end of world brane [Hartman, Maldacena]
- Injecting energy density is dual to a collapsing shell. Saturation happens when the HRT surface touches the shell [Liu, Suh]

Holographic models of quenches

- Dual of Cardy-Calabrese boundary state is eternal BH with end of world brane [Hartman, Maldacena]
- Injecting energy density is dual to a collapsing shell. Saturation happens when the HRT surface touches the shell [Liu, Suh]
- The two setups are equivalent for large R [MM]
- v_E is determined by behind the horizon physics
- Saturation is determined by near horizon physics, and EE saturates as fast as possible

$$t_S = \frac{R}{v_B}$$

Conceptual argument based on entanglement wedge reconstruction.

End of the world brane quench

Holographic models of quenches

- Dual of Cardy-Calabrese boundary state is eternal BH with end of world brane [Hartman, Maldacena]
- Injecting energy density is dual to a collapsing shell. Saturation happens when the HRT surface touches the shell [Liu, Suh]
- The two setups are equivalent for large R [MM]
- v_E is determined by behind the horizon physics
- Saturation is determined by near horizon physics, and EE saturates as fast as possible

$$t_S = \frac{R}{v_B}$$

Conceptual argument based on entanglement wedge reconstruction.

• Using the NEC, we can show that there are nontrivial constraints on these velocities:

$$v_E \le v_E^{(\text{SBH})}, \quad v_B \le v_B^{(\text{SBH})},$$

 $v_E \le v_B$

End of the world brane quench

Detailed understanding of how HRT surfaces are behaving

- For large R, we can understand the entropy analytically
- In both setups the minimal surfaces are close to a critical surface determined by an algebraic equation.
- They shoot out to the boundary exponentially fast.

Detailed understanding of how HRT surfaces are behaving

- For large R, we can understand the entropy analytically
- In both setups the minimal surfaces are close to a critical surface determined by an algebraic equation.
- They shoot out to the boundary exponentially fast.
- Entropy and time are given by the critical surface

Spin chain results on entanglement and chaos

i

Chaotic spin chain Hamiltonian: $H = -\sum (Z_i Z_{i+1} - 1.05X_i + 0.5Z_i)$

• Entropy growth and v_E:

Spin chain results on entanglement and chaos

Chaotic spin chain Hamiltonian: $H = -\sum (Z_i Z_{i+1} - 1.05X_i + 0.5Z_i)$

• Entropy growth and v_E:

Operator growth [Roberts, Susskind, Stanford]

$$v_B = 2.0 > v_E \,, \quad t_S > \frac{R}{v_B}$$

Comparison with bounds

Combination of the two bounds comes very close to the data from chaotic systems.

• d=2: linear growth until saturation

Comparison with bounds

Combination of the two bounds comes very close to the data from chaotic systems.

Middle regime in good agreement with holographic theories

Outline

Entanglement generation and chaos

- Two velocities
- Bounds

Data on entanglement growth

- Holographic results
- Spin chain results

Interpretation and benchmarking

- Operator growth model
- Free streaming, free scalar theory

Summary and open questions

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

$$\rho(0) = |\uparrow\uparrow\dots\uparrow\rangle\langle\uparrow\uparrow\dots\uparrow| = \prod_{i} \frac{\mathbb{I}_{i} + Z_{i}}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0)$$

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

$$\rho(0) = |\uparrow\uparrow \dots \uparrow\rangle \langle\uparrow\uparrow \dots \uparrow| = \prod_{i} \frac{\mathbb{I}_{i} + Z_{i}}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0)$$
$$\implies \rho_{A}(t) = \frac{1}{2^{V_{A}/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(t)_{A}$$

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

$$\rho(0) = |\uparrow\uparrow \dots \uparrow\rangle \langle\uparrow\uparrow \dots \uparrow| = \prod_{i} \frac{\mathbb{I}_{i} + Z_{i}}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0)$$
$$\implies \rho_{A}(t) = \frac{1}{2^{V_{A}/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(t)_{A}$$

• Second Rényi entropy:

$$\operatorname{Tr}_A \rho_A(t)^2 \approx \frac{1}{2^{V_A}} \sum_{\mathcal{O}(0)} \operatorname{Tr}_A \left(\mathcal{O}(t)_A^2 \right)$$

- Small operators contribution: 1 Big operators: probability of staying inside $\operatorname{Tr}_A\left(\mathcal{O}(t)_A^2\right) = 2^{-\alpha \, s_{\mathrm{th}} A[\mathcal{O}(0)](t-t_{\mathrm{delay}})}$
- Have to sum over all operators

Operator counting model [Abanin, Ho]

- Closer in spirit to spin chains, infinite temperature
- The reduced density matrix is an operator, so it also spreads

$$\rho(0) = |\uparrow\uparrow \dots \uparrow\rangle \langle\uparrow\uparrow \dots \uparrow| = \prod_{i} \frac{\mathbb{I}_{i} + Z_{i}}{2} = \frac{1}{2^{V/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(0)$$
$$\implies \rho_{A}(t) = \frac{1}{2^{V_{A}/2}} \sum_{\mathcal{O}(0)} \mathcal{O}(t)_{A}$$

• Second Rényi entropy:

$$\operatorname{Tr}_A \rho_A(t)^2 \approx \frac{1}{2^{V_A}} \sum_{\mathcal{O}(0)} \operatorname{Tr}_A \left(\mathcal{O}(t)_A^2 \right)$$

- Small operators contribution: 1 Big operators: probability of staying inside $\operatorname{Tr}_A\left(\mathcal{O}(t)_A^2\right) = 2^{-\alpha \, s_{\mathrm{th}} A[\mathcal{O}(0)](t-t_{\mathrm{delay}})}$
- Have to sum over all operators
- Saturates the combined bounds, gives microscopic picture for them
 - \succ t_s is determined by when the last small operator gets out
 - \blacktriangleright In the spin chain we can measure α independently, good agreement with the data for $S_2(t)$

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

• Leads to linear growth with $v_E = 1$ in 2d

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

• Leads to linear growth with $v_E = 1$ in 2d

• Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone $\mu[L_{\Sigma}]$ Contribution from each light cone has to be added.

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

• Leads to linear growth with $v_E = 1$ in 2d

2t < l

• Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone $\mu[L_{\Sigma}]$ Contribution from each light cone has to be added.

Bound on the entanglement velocity from SSA:

$$v_E \le v_E^{(\text{EPR})} = \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}\Gamma(\frac{d}{2})} < v_E^{(\text{SBH})}$$

Slower than holography.

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs, subsequently travel freely at the speed of light isotropically. In this model v_B is not captured.

• Leads to linear growth with $v_E = 1$ in 2d

• Higher dimensions: entanglement spreading depends on entanglement pattern on the light cone $\mu[L_{\Sigma}]$ Contribution from each light cone has to be added.

Bound on the entanglement velocity from SSA:

$$v_E \le v_E^{(\text{EPR})} = \frac{\Gamma(\frac{d-1}{2})}{\sqrt{\pi}\Gamma(\frac{d}{2})} < v_E^{(\text{SBH})}$$

Slower than holography.

- In strongly coupled systems, entanglement propagates faster than what's possible for free particles streaming at the speed of light!
- $t_S^{(\text{SBH})} > t_S$ is achievable, makes free streaming look even less effective
- Consider the effect of interactions: tensor network picture emerging from scattering particles is natural [Hartman, Maldacena; Casini, Liu, MM]

Entanglement spread in free scalar theory

In a free theory for time dependent Gaussian states the symplectic eigenvalues of the (reduced) correlation matrix determine the entanglement entropy.

 Numerical results for 3d boundary state quench for scalar field [Cotler, Hertzberg, MM, Mueller]

Outline

Entanglement generation and chaos

- Two velocities
- Bounds

Data on entanglement growth

- Holographic results
- Spin chain results

Interpretation and benchmarking

- Operator growth model
- Free streaming, free scalar theory

Summary and open questions

Summary and open questions

Summary

- Studied EE spread in a global quench
- Bound from chaos and thermal relative entropy: $v_E \leq v_B$, $t_S \geq R/v_B$
- In holography: $t_S = R/v_B$
- Can solve for the entire $S_A(t)$ curve analytically
- In chaotic spin chain: $v_E < v_B$
- Operator growth model saturates the bounds, good agreement with holography and the spin chain
- Free streaming is slower than holography, quasiparticle picture agrees with free theory

Summary and open questions

Summary

- Studied EE spread in a global quench
- Bound from chaos and thermal relative entropy: $v_E \leq v_B \,, \quad t_S \geq R/v_B$
- In holography: $t_S = R/v_B$
- Can solve for the entire $S_A(t)$ curve analytically
- In chaotic spin chain: $v_E < v_B$
- Operator growth model saturates the bounds, good agreement with holography and the spin chain
- Free streaming is slower than holography, quasiparticle picture agrees with free theory

holography d = 2+1 $\begin{array}{c} 1 \\ 0.8 \\ \hline (8) \\ V \\ S \\ (1) \\ V \\ S \\ 0.2 \\ 0 \\ 0 \\ 0.2 \\ 0 \\ 0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.2 \\ 0 \end{array}$

Open questions

- What is an independent characterization of v_E?
- Can the bound from relative entropy be saturated in a QFT? Are the holographic bounds $v_E \leq v_E^{(\text{SBH})}$, $v_B \leq v_B^{(\text{SBH})}$ universal?
- The velocities and t_s are new observables in a QFT. Are they calculable?
 - > What are they in weakly coupled theories? $[v_B: Stanford]$
 - \succ What are they for perturbed 2d CFTs? [v_E: Cardy]