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Entanglement generation in global quenches

Global quench:

Thermalization in a pure state |¢(t))
Start with QFT in a short-range entangled
state at t=0. (E.g. inject uniform energy
density or change the Hamiltonian)
One-point functions reach thermal value
tioc ~ 1/T

EE (similarly to (¢(R) ¢(0))) take ts ~ R
to saturate to thermal value

Good diagnostic of thermalization is how

close pa (|1(t)))is to Tr ze PE)H
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Global quench:

Thermalization in a pure state |¢(t))
Start with QFT in a short-range entangled
state at t=0. (E.g. inject uniform energy
density or change the Hamiltonian)
One-point functions reach thermal value
tioc ~ 1/T

EE (similarly to (¢(R) ¢(0))) take ts ~ R
to saturate to thermal value

Good diagnostic of thermalization is how

close pa (|1(t)))is to Tr ze PE)H

What is the time evolution of EE?
e 2d: numerics, CFT techniques

e d>2: holography, free field theory
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Bounds on entanglement growth

Monotonicity of relative entropy combined with
emergent light cones

* v cone at finite temperature in chaotic systems
* Monotonicity of relative entropy for subsystems
* Tsunami bound [Afkhami-Jeddi, Hartman]
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Bounds on entanglement growth

Monotonicity of relative entropy combined with
emergent light cones

* v cone at finite temperature in chaotic systems
* Monotonicity of relative entropy for subsystems
e Tsunami bound

S[A®)] < S[A'(t")] + s (VIA(t)] = V[A'(¥)])
* Taking t' =0: S[A(t)] < s¢n V[tsunami(t)]

insc

B Z

* Consequences: vgp <vp, ttg >

Proposed inequality

8155[14(75)] S VE Sth Az

tsunami(t)

* Rigorous versions exist for lattice systems
e Can be proven in holography

Combination of the two bounds captures many of the
essential details of entanglement growth in chaotic
systems.
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Holographic results on entanglement

End of the world brane quench

Holographic models of quenches
* Dual of Cardy-Calabrese boundary state is eternal S I
t

BH with end of world brane
* Injecting energy density is dual to a collapsing shell.
Saturation happens when the HRT surface touches

the shell
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* The two setups are equivalent for large R .
. P ! arse ™ LY 1B) —7
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e Saturation is determined by near horizon physics,
and EE saturates as fast as possible Vaidya quench
R
tg = —
YB HRT

Conceptual argument based on entanglement
wedge reconstruction. ¢
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e Using the NEC, we can show that there are non-

trivial constraints on these velocities:

(SBH) (SBH)
E

vEp S v , vB S vp ;

Vg < UB



Holographic results on entanglement

Detailed understanding of how HRT surfaces are Critical surface

behaving =)

* Forlarge R, we can understand the entropy 1or K
analytically

* In both setups the minimal surfaces are closetoa '° W
critical surface determined by an algebraic
equation. 051

* They shoot out to the boundary exponentially fast.
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Holographic results on entanglement

Detailed understanding of how HRT surfaces are Critical surface

behaving 2(e)
* Forlarge R, we can understand the entropy or K

analytically
* In both setups the minimal surfaces are closetoa '° \

critical surface determined by an algebraic

equation. 0.51
* They shoot out to the boundary exponentially fast.
* Entropy and time are given by the critical surface s 10 15 20 25

S(t) / S(eo)
1.0"

0.8
0.6]
0.4
02
0.0/
02!

02 04




Spin chain results on entanglement and chaos

Chaotic spin chain Hamiltonian: H = — Z (Z;Zix1 — 1.05X; + 0.57;)
* Entropy growth and vg: i

5 N = 26 spin chain, A = first 12 sites Dependence of v on Renyi index
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Spin chain results on entanglement and chaos
Chaotic spin chain Hamiltonian: H = — Z (Z;Zix1 — 1.05X; + 0.57;)

* Entropy growth and vg: i
5 N = 26 spin chain, A = first 12 sites Dependence of v on Renyi index
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Comparison with bounds

Combination of the two bounds comes very close to the data from chaotic systems.

spin chain n =26, A =12 spins

 d=2:linear growth until saturation 1




d=2: linear growth until saturation 1,

d>2: three regimes
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Comparison with bounds

Combination of the two bounds comes very close to the data from chaotic systems.

spin chain n =26, A =12 spins
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Operator growth model

Operator counting model
e Closer in spirit to spin chains, infinite temperature
 The reduced density matrix is an operator, so it aIso spreads
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Operator growth model

Operator counting model
e Closer in spirit to spin chains, infinite temperature
 The reduced density matrix is an operator, so it aIso spreads

p0) = 111 it 1= [[ 52 = o 3~ 0

| O(0)
pa(t) = OVa/2 Z O(t)
O(0)

e Second Rényi entropy:

TI‘A,OA ~ VA ZTIA
O(0)

* Small operators contribution: 1
Big operators: probability of staying inside Tr4 (O(t)%) = 27 s AC O]~ actay)

 Have to sum over all operators
e Saturates the combined bounds, gives microscopic picture for them
> t.is determined by when the last small operator gets out

» In the spin chain we can measure « independently, good agreement with the data
for Sa(t)



Free streaming model of entanglement spread

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs,

subsequently travel freely at the speed of light isotropically. In this.2model vBiZS. not captured.

 Leadstolinear growth with vg = 1in 2d
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Free streaming model of entanglement spread

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs,

subsequently travel freely at the speed of light isotropically. In this.2model vBiZS. not captured.

 Leadstolinear growth with vg = 1in 2d

* Higher dimensions: entanglement spreading depends 2t<l
on entanglement pattern on the light cone u[Ls] 3
Contribution from each light cone has to be added.

Bound on the entanglement velocity from SSA:

(¢=L
UESUSEEPR) _ ( 2 ) <U§?SBH)

Val(g)
Slower than holography.

* | In strongly coupled systems, entanglement propagates faster than what’s possible for
free particles streaming at the speed of light!

. 4(SBH)

S

> ts is achievable, makes free streaming look even less effective

* Consider the effect of interactions: tensor network picture emerging from scattering
particles is natural



Entanglement spread in free scalar theory

In a free theory for time dependent Gaussian states the symplectic eigenvalues of the
(reduced) correlation matrix determine the entanglement entropy.

* Numerical results for 3d boundary state quench for scalar field

Strip Sphere

Boundary State Quench (3 = 10) in 2+1 Dimensions Boundary State Quench (3 = 10) in 2+1 Dimensions
(R =300, RMax = 1200, NR = 1200, pMax = 3, NP = 150) 1800 (R =300, RMax = 1200, NR = 1200, LMax = 300)
T T T T T T T
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Summary and open questions

Summary

Studied EE spread in a global quench

Bound from chaos and thermal relative entropy:

vg <vp, ts>R/up

In holography: ts = R/vp

Can solve for the entire S4(t) curve analytically

In chaotic spin chain: vg < vp

Operator growth model saturates the bounds, good
agreement with holography and the spin chain

Free streaming is slower than holography,
qguasiparticle picture agrees with free theory
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Summary and open questions

Summary

» Studied EE spread in a global quench

* Bound from chaos and thermal relative entropy:
vg <vp, ts>R/up

 Inholography:ts = R/vp

e Can solve for the entire Sa(t) curve analytically

* In chaotic spin chain: vg < vp

* Operator growth model saturates the bounds, good
agreement with holography and the spin chain

* Free streaming is slower than holography,
qguasiparticle picture agrees with free theory

Open questions
* What is an independent characterization of v;?
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 Canthe bggnd from relauS\{BeHentropy be saturated in a QFT? Are the holographic bounds

vp < vg , v < vg universal?

* The velocities and tS are new observables in a QFT. Are they calculable?

» What are they in weakly coupled theories?
» What are they for perturbed 2d CFTs?



