Some aspects of the Sachdev-Ye-Kitaev model

Vladimir Rosenhaus KITP

Strings 2016

SYK model

Sachdev, Ye '93, Kitaev '15

- Quantum mechanics of $N \gg 1$ fermions.

- Interaction between any four sites
- Gaussian-random coupling $J_{i j k l}$

SYK

$$
H=\sum_{1 \leq i<j<k<l \leq N} J_{i j k l} \chi_{i} \chi_{j} \chi_{k} \chi_{l}
$$

Majorana fermions $\left\{\chi_{i}, \chi_{j}\right\}=\delta_{i j}$

Quenched disorder

$$
P\left(J_{i j k l}\right) \sim \exp \left(-12 N^{3} J_{i j k l}^{2} / J^{2}\right)
$$

Three properties

- Solvable.

Can compute correlation functions at large N

- Emergent conformal invariance

In IR (strong coupling)
At level of 2-pt function; broken by 4-pt function

- Maximally chaotic

At strong coupling, has same Lyapunov exponent as a black hole, saturating the Maldacena Shenker Stanford bound

Holographic?
Sachdev '10, Kitaev '15

Outline

1. Review of 2-pt function
2. 4-pt function
3. Variants of SYK

2-pt function

2-pt function

Sachdev Ye '93; Georges, Parcollet, Sachdev '01; Kitaev '15

$$
L=\sum_{i} \frac{1}{2} \chi_{i} \frac{d}{d \tau} \chi_{i}-\sum_{i, j, k, l} J_{i j k l} \chi_{i} \chi_{j} \chi_{k} \chi_{l}
$$

- SYK solvable as a result of having a small \& wellorganized set of Feynman diagrams: nested sunsets.

$$
G(\tau) \equiv\left\langle T \chi_{i}(\tau) \chi_{i}(0)\right\rangle= \begin{cases}\frac{1}{2} \operatorname{sgn}(\tau), & |J \tau| \ll 1 \\ \frac{1}{\sqrt{4 \pi}} \frac{\operatorname{sgn}(\tau)}{|J \tau|^{1 / 2}}, & |J \tau| \gg 1\end{cases}
$$

4-pt function

4-pt function

Kitaev '15; Polchinski, V.R. '16; Maldacena, Stanford '16

- Only ladder diagrams

4-pt function: 3 steps

1) Find eigenvalues $g(\nu)$ and eigenvectors $v_{\nu \omega}\left(\tau_{a}, \tau_{b}\right)$ of kernel

$$
\begin{gathered}
v_{\nu \omega}\left(\tau_{a}, \tau_{b}\right) \sim \frac{\operatorname{sgn}\left(\tau_{a b}\right)}{\left|\tau_{a b}\right|} e^{-i \omega\left(\tau_{a}+\tau_{b}\right) / 2}\left(J_{\nu}\left(\left|\omega \tau_{a b}\right| / 2\right)+\xi_{\nu} J_{-\nu}\left(\left|\omega \tau_{a b}\right| / 2\right)\right) \\
g(\nu)=-\frac{3}{2 \nu} \tan \frac{\nu \pi}{2}
\end{gathered} \xi_{\nu}=\frac{\tan \nu \pi / 2+1}{\tan \nu \pi / 2-1}
$$

2) Take a complete set of eigenvectors

View Bessel eqn. as a Schrodinger eqn.

$$
-\frac{d^{2} J_{\nu}(x)}{d x^{2}}-e^{2 x} J_{\nu}(x)=-\nu^{2} J_{\nu}(x) \quad x=\log \left|\omega t_{a b} / 2\right|
$$

Need ξ_{ν} to vanish for real ν

$$
\nu= \begin{cases}i r, & r>0 \\ \frac{3}{2}+2 n, & n \geq 0\end{cases}
$$

scattering
bound
3) Expanding 1 PI four-point function in terms of eigenvectors, from Schwinger-Dyson eqn. get

$$
\begin{array}{r}
\Gamma=\frac{1}{N} \sum_{\substack{\nu=3 / 2+2 n \\
i r}} \int d \omega \frac{v_{\nu \omega}^{*}\left(\tau_{1}, \tau_{2}\right) v_{\nu \omega}\left(\tau_{3}, \tau_{4}\right)}{1-g(\nu)} \\
g(\nu)=-\frac{3}{2 \nu} \tan \frac{\nu \pi}{2}
\end{array}
$$

For a nice form, in terms of only the spectrum
(ν for which $g(\nu)=1$), see talk by D. Stanford

Conformal symmetry breaking

- Divergence due to $\nu=3 / 2$
- Result of IR limit ($|J \tau| \gg 1$). Eliminate by including $\frac{1}{|J \tau|}$ corrections to IR two-point function appearing in kernel.
- Analogous to breaking that occurs in AdS_{2} as studied by Almheiri, Polchinski '14
- Detailed story Kitaev '15; Maldacena, Stanford '16; Jensen, '16 Maldacena, Stanford, Yang '16; Engelsoy, Mertens, Verlinde '16;
Almheiri, Kang '16; Jevicki, Suzuki, Yoon, '16; Bagrets, Altland, Kamenev, '16

6-pt function

Jevicki, Suzuki, Yoon, '16
D.Gross, V.R., in progress

Variants of SYK

SYK: an new class

Hard

Matrix model planar diagrams

SYK
sunset diagrams

Easy

vector model bubble diagrams

Disorder

- $J_{i j k l}$ is Gaussian random
- Instead, let $J_{i j k l}$ be a nearly static quantum field (e.g. momentum of a harmonic oscillator, with nearly zero frequency)

- Quantum corrections are $1 / N^{3}$ suppressed
- So gives same correlation functions

Sunsets vs Rainbows

- SYK sums sunset diagrams

- Rainbow diagrams are easier

e.g. 't Hooft model 2d QCD

Random mass fermion

- Fermion with random mass is in SYK family

$$
H=\sum_{i j} J_{i j} c_{i}^{\dagger} c_{j}
$$

- $J_{i j}$ is two index, so this should be thought of as a rainbow diagram

Random mass fermion: solution

- At finite N , two-point function given by matrix integral

$$
G(\omega)=-\frac{1}{N} \frac{1}{Z} \int \prod_{i \leq j} d J_{i j} \operatorname{tr}\left(\frac{1}{i \omega+J}\right) \exp \left(-\operatorname{tr}\left(J^{2}\right) / 2 \bar{J}^{2}\right)
$$

- Solve by method orthogonal polynomials

$$
G(\omega)=\frac{i}{\omega} \frac{1}{N} \int_{0}^{\infty} d s e^{-s} e^{-\frac{s^{2} \bar{J}^{2}}{2 \omega^{2}}} L_{N-1}^{1}\left(\frac{s^{2} \bar{J}^{2}}{\omega^{2}}\right)
$$

- Can expand in powers of $1 / \mathrm{N}$
- Higher-point correlators similarly given in terms of associated Laguerre polynomials

No chaos for some rainbow models

- Fermion with random mass is not chaotic
- IP/IOP models: harmonic oscillator in adjoint representation of $U(N)$ coupled to oscillator in fundamental of $\mathrm{U}(\mathrm{N})$. Has (elaborate) rainbow diagrams. lizuka, Okuda, Polchinski '08
- IOP model is not chaotic Michel, Polchinski, V.R., Suh '16
- Other rainbow models?

Space of SYK models

- SYK

- Bosons

> spin glass? Sachdev, Fu '16

- SUSY

> Anninos, Anous, Denef ‘16

- SY

$$
\begin{aligned}
& H=\frac{1}{\sqrt{M}} \sum_{i, j=1}^{N} \sum_{\mu, \nu=1}^{M} J_{i j} S_{i \nu}^{\mu} S_{j \mu}^{\nu} \\
& S_{i \nu}^{\mu}=\sum_{\alpha=1}^{n} c_{i \alpha}^{\mu \dagger} c_{i \nu}^{\alpha} \quad \sum_{\mu=1}^{M} c_{i \alpha \mu}^{\dagger} c_{i}^{\beta \mu}=m \delta_{\alpha}^{\beta}
\end{aligned}
$$

Summary

- SYK is a thermalizing, chaotic system
- Remarkably, it is solvable at large N .
- Nearly conformal in IR, leading to simplification.
- Two-point function given by sum of sunset diagrams
- Four-point function given by sum of ladder diagrams
- Diagrammatic structure - nested sunsets - is new
- More models with this structure?
- Dual of SYK?

