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SYK model

• Quantum mechanics of             fermions. 

• Interaction between any four sites 

• Gaussian-random coupling        

Sachdev,Ye ’93,  Kitaev ‘15
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Majorana fermions

July 11, 2016

Contents

N � 1

Jijkl
1  j < k < l  N

H =

X

1i<j<k<lN

Jijkl �i�j�k�l (0.1)

{�i,�j} = �ij (0.2)

P (Jijkl) ⇠ exp

�
�12N3J2

ijkl/J
2
�

(0.3)

1

Quenched disorder
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Three properties
• Solvable.  

• Emergent conformal invariance 

• Maximally chaotic   

Can compute correlation functions at large N

In IR (strong coupling) 
At level of 2-pt function; broken by 4-pt function

Holographic? 
Sachdev ’10,  Kitaev ‘15

At strong coupling, has same Lyapunov exponent as a black 
hole, saturating the Maldacena Shenker Stanford bound



Outline

1. Review of 2-pt function 

2. 4-pt function 

3. Variants of SYK



2-pt function



2-pt function

• SYK solvable as a result of having a small & well-
organized set of Feynman diagrams: nested sunsets. 

Sachdev Ye ’93; Georges, Parcollet, Sachdev ’01;   Kitaev ’15
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4-pt function



• Only ladder diagrams 

4-pt function
Kitaev ’15; Polchinski, V.R. ‘16;  Maldacena, Stanford ‘16
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4-pt function: 3 steps

1) Find eigenvalues          and eigenvectors  

    of kernel 

coe�cient so as to ensure it is an eigenvector. In Appendix. C we evaluate the integral

(3.23) and find that the Z
⌫

in the eigenfunctions are given by,

Z
⌫

(x) = J
⌫

(x) + ⇠
⌫

J−⌫(x), ⇠
⌫

= tan(⌫⇡�2) + 1
tan(⌫⇡�2) − 1 , (3.24)

and that the corresponding eigenvalues for the eigenvectors (3.19) are,

g(⌫) = − 3

2⌫
tan

⌫⇡

2
. (3.25)

Setting ⌫ = 2↵−1 gives back (3.8). Moreover, the eigenfunctions (3.19, 3.24) agree with

the eigenfunctions (3.18) found previously through use of the SL(2,R) generators.
3.4 A complete set of eigenvectors

In the previous section we established that the eigenvectors of the kernel (3.4) are given

by (3.19, 3.24). In this section, we find the appropriate range of ⌫ so as to have a set

of eigenvectors v
⌫!

(t
1

, t
2

) that form a complete basis over t
1

, t
2

.4 We will do this by

appealing to the standard fact in quantum mechanics that the full set of continuous

and bound states forms a complete basis.

We start with the Bessel equation,

t2J ′′
⌫

(t) + tJ ′
⌫

(t) + (t2 − ⌫2)J(t) = 0 , (3.26)

which, upon substituting x = log t becomes,

− d2J
⌫

(x)
dx2

− e2xJ
⌫

(x) = −⌫2J
⌫

(x) . (3.27)

The Bessel equation looks like a Schrödinger equation in a potential

V (x) = −e2x , (3.28)

with an energy of −⌫2.

Now notice that the eigenfunction (3.24) has a term J−⌫(�!t12��2), which diverges

at small �t
12

� for Re(⌫) > 0. In terms of the x coordinate, this is a divergence at large

negative x for the states with negative energy. 5 We get rid of these states by placing

4The eigenvectors have the antisymmetry v⌫!(t1, t2) = −v⌫!(t2, t1), consistent with the antisym-
metry of fermions. So, the eigenvectors will form a complete basis for antisymmetric functions of
t1, t2.

5In fact, recall that in the calculation of Appendix C, to demonstrate that (3.24) is an eigenfunction
requires that �Re(⌫)� < 1, as otherwise various integral identities involving J−⌫ are not valid. If, however,
⇠⌫ is chosen to vanish, so that J−⌫ is absent, then the eigenfunctions are valid as long as Re(⌫) > −1.
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Also,

J̃ ′
⌫

(p) = � dt

t
eiptJ

⌫

(�t�) = 2i sgn(p)
⌫

� sin(⌫ sin−1 �p�)✓(1− �p�)+ sin(⌫⇡�2)(�p� +�p2 − 1)⌫ ✓(�p�−1)�
(C.6)

and similarly for Y ′
⌫

(p) (Eq. 6.693 of [28]). One should note that the above formula for

J ′
⌫

(p) is only valid for Re ⌫ > −1, and the one for Y ′
⌫

(p) is valid for �Re(⌫)� < 1.
Let the eigenvector be a combination of Bessel functions,

Z
⌫

= c
J

J
⌫

+ c
Y

Y
⌫

. (C.7)

The Fourier transform of (C.3) becomes,

4i

⌫
�
1 − p2 ✓(1 − �p�) sin(⌫ sin−1 �p�)�cJ − cY tan ⌫⇡�2�

− 2i

⌫
�
p2 − 1✓(�p� − 1)(�p� −�p2 − 1)⌫ cos(⌫⇡)

cos(⌫⇡�2)cY
− 4i

⌫
�
p2 − 1✓(�p� − 1)� c

J

sin(⌫⇡�2)(�p� +�p2 − 1)⌫ − 1

2

c
Y

cos(⌫⇡�2)(�p� −�p2 − 1)⌫ � (C.8)

The Fourier transform of Z
⌫

sgn(⌧) is
2i sin(⌫ sin−1 �p�)�

1 − p2 ✓(1 − �p�)�c
J

+ c
Y

tan(⌫⇡�2)�
+ i cos(⇡⌫)
sin(⌫⇡�2)�p2 − 1(�p� −�p2 − 1)⌫✓(�p� − 1)c

Y

+ i�
p2 − 1✓(�p� − 1)�2 c

J

cos ⌫⇡�2(�p� +�p2 − 1)⌫ − c
Y

sin(⌫⇡�2)(�p� −�p2 − 1)⌫ � , (C.9)

which has the range of validity of Re(⌫) > −2 coming from the J
⌫

integral, and �Re ⌫� < 2
from the Y

⌫

integral. Equating (C.8) and (C.9), the eigenfunction is therefore,

Z̄
⌫

= (tan ⌫⇡�2 − 1)J
⌫

+ (1 + tan ⌫⇡�2)Y
⌫

, (C.10)

with eigenvalues 2⇡

⌫

tan ⌫⇡�2 (recall the factor of −⇡ in (C.1)). We can rewrite this as

Z ′
⌫

≡ −Z̄
⌫

sin ⌫⇡ = �J
⌫

(tan ⌫⇡�2 − 1) + J−⌫(tan ⌫⇡�2 + 1)� (C.11)

Finally, let us rescale the eigenfunctions, writing them as

Z
⌫

= J
⌫

+ ⇠
⌫

J−⌫ , ⇠
⌫

= tan ⌫⇡�2 + 1
tan ⌫⇡�2 − 1 , (C.12)
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where we are reusing notation for Z
⌫

; this Z
⌫

is a multiple of the one in (C.7). Now

recall that in the integral (3.20) there should be a factor of − 3

4⇡

: the 3 is due to Feynman

diagram combinatorics, and the 1�4⇡ is from the normalization of the 2-pt function.

The eigenvalues are thus,

g(⌫) = − 3

2⌫
tan

⌫⇡

2
. (C.13)

Setting ⌫ = 2↵ − 1 gives (3.8). Moreover, the eigenfunctions (C.12) agree with (3.18).

Finally, it will be useful for later to note that

⇠
ir

= − 1

cosh(⇡r)(1 + i sinh⇡r) , (C.14)

and so Z∗
ir

= Z−ir.
D Integrals of products of Bessel functions

In this appendix we review some integral identities involving products of Bessel func-

tions.

Laplace transform of J
⌫

J
⌫

and J
⌫

J−⌫
We would like to evaluate integrals of the form

� ∞
0

dt e−↵tJ
⌫

(�t)J
⌫

(�t) , (D.1)

where the cylindrical function J
⌫

is defined as

J
⌫

= a(⌫)J
⌫

+ b(⌫)Y
⌫

, (D.2)

where a(⌫), b(⌫) are arbitrary functions of ⌫ with period one, and J
⌫

, Y
⌫

are the Bessel

functions.

From the Bessel addition formula,

J
⌫

��Z2 + z2 − 2Zz cos���Z − ze−i�
Z − zei� �⌫�2 = ∞�

m=−∞J
⌫+m(Z)Jm(z)eim� , (D.3)

where �ze±i�� < �Z �, one finds [29],

� ⇡

0

d�
J
⌫

(�Z2 + z2 − 2Zz cos�)(Z2 + z2 − 2Zz cos�)⌫�2 sin2⌫ � = 2⌫�(⌫ + 1�2)�(1�2)J⌫(Z)
Z⌫

J
⌫

(z)
z⌫

. (D.4)
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2) Take a complete set of eigenvectors 

View Bessel eqn. as a Schrodinger eqn.  

                    

Need        to vanish for real  
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3) Expanding 1PI four-point function in terms of 
eigenvectors, from Schwinger-Dyson eqn. get 

For a nice form, in terms of only the spectrum  
(     for which                ), 
see talk by D. Stanford         
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where we are reusing notation for Z
⌫

; this Z
⌫

is a multiple of the one in (C.7). Now

recall that in the integral (3.20) there should be a factor of − 3

4⇡

: the 3 is due to Feynman

diagram combinatorics, and the 1�4⇡ is from the normalization of the 2-pt function.

The eigenvalues are thus,
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Setting ⌫ = 2↵ − 1 gives (3.8). Moreover, the eigenfunctions (C.12) agree with (3.18).

Finally, it will be useful for later to note that

⇠
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D Integrals of products of Bessel functions

In this appendix we review some integral identities involving products of Bessel func-
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Conformal symmetry breaking
• Divergence due to  

• Result of IR limit (                ). Eliminate by 
including       corrections to IR two-point function 
appearing in kernel. 

• Analogous to breaking that occurs in AdS2 as 
studied by Almheiri, Polchinski ’14 

• Detailed story

⌫ = 3�2 (0.14)
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Variants of SYK



SYK: an new class

Hard Easy

Matrix model 
planar diagrams

SYK 
sunset diagrams

vector model 
bubble diagrams



Disorder
•           is Gaussian random  

• Instead, let           be a nearly static quantum field (e.g. 
momentum of a harmonic oscillator, with nearly zero 
frequency ) 

• Quantum corrections are           suppressed  

• So gives same correlation functions  

July 11, 2016
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Sunsets vs Rainbows

• SYK sums sunset diagrams 

• Rainbow diagrams are easier 

 
e.g. ’t Hooft model 2d QCD



Random mass fermion

• Fermion with random mass is in SYK family 

•       is two index, so this should be thought of as a 
rainbow diagram        

⌫ = 3�2 (0.14)

1�J⌧ � (0.15)

1�N3
(0.16)

H =�
ij

Jij c
†
icj (0.17)

P (Jij) ∼ exp �−2NJ2
ij�J2�

(0.18)

2

⌫ = 3�2 (0.14)

1�J⌧ � (0.15)

1�N3
(0.16)

H =�
ij

Jij c
†
icj (0.17)

P (Jij) ∼ exp �−2NJ2
ij�J2�

(0.18)

Jij (0.19)

2



Random mass fermion: solution
• At finite N, two-point function given by matrix integral 

• Solve by method orthogonal polynomials 

• Can expand in powers of 1/N 

• Higher-point correlators similarly given in terms of 
associated Laguerre polynomials 

Separating the denominator by partial fractions we get,
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, (4.25)

where G(!) is the full propagator, given by (4.6). The other term, B(!
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or in terms of the bare propagator,
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which is,
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and hence,
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5 Finite N

In this section we study the SYK model for finite N .

In Sec. 5.1 we study the Dirac SYK, and compute the two-point function, given

by (5.21) or alternatively (5.24). We expand this exact two-point as a series in 1/N2,

with the result given by (5.29). The finite-temperature two-point function is given by

(5.40).

In Sec. 5.2 we study the Majorana SYK. The two-point function is found to be

(5.49), or alternatively (5.51). We then compute the four-point function, with the

result given by Eqs 5.53, 5.54, 5.55 and the subsequent equations.

5.1 Finite N for Dirac SYK

The two-point function is given by,

G(!) = � 1

N

1
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ij

tr

✓
1

i! + J

◆
exp

�
�tr(J2)/2J̄2

�
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�
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to write,
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This will be our final answer for the two-point function.

An alternate way to write the two-point function is to preform the sum over k

earlier, at the stage of (5.15). In particular, note that,
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Taking the limit y ! x,
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Applying this to (5.15),
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5.1.1 1/N expansion

Using that
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we do a series expansion of (5.21) in powers of 1/N . Recall that J̄2 = J2/N . Exchanging

the order of the sums, and performing the integral over s, we get,
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Expanding B(p,N) in series in powers of 1/N2,
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No chaos for some rainbow models

• Fermion with random mass is not chaotic 

• IP/IOP models: harmonic oscillator in adjoint 
representation of U(N) coupled to oscillator in 
fundamental of U(N). Has (elaborate) rainbow 
diagrams.  

• IOP model is not chaotic  

• Other rainbow models?

Iizuka, Okuda, Polchinski ‘08

Michel, Polchinski, V.R., Suh ‘16



Space of SYK models
• SYK 

• Bosons 

• SUSY 

• SY 
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Summary
• SYK is a thermalizing, chaotic system 

• Remarkably, it is solvable at large N.  

• Nearly conformal in IR, leading to simplification. 

• Two-point function given by sum of sunset diagrams  

• Four-point function given by sum of ladder diagrams 

• Diagrammatic structure - nested sunsets - is new 

• More models with this structure? 

• Dual of SYK?


