Bootstrap approach to CFT in D dimensions

Slava Rychkov

CERN \&
École Normale Supérieure (Paris) \& Université Pierre et Marie Curie (Paris)

Strings 2013, Seoul

Origins of Conformal Bootstrap, early 1970's

Raoul Gatto

Sergio Ferrara

Aurelio Grillo

Alexander Polyakov

Results from those early days

- primary operators + descendants [Mack, Salam 1969]
- unitarity bounds [Ferrara, Gatto, Grillo 1974, Mack 1977]
- conformally invariant OPE
- constraints on the correlation functions of primaries

Results from those early days

- primary operators + descendants [Mack, Salam 1969]
- unitarity bounds [Ferrara, Gatto, Grillo 1974, Mack 1977]
- conformally invariant OPE
- constraints on the correlation functions of primaries

They realized that:

I) Any CFT is characterized by
conformal data $=\left\{\right.$ primary operator dimensions Δ_{i}, OPE coefficients $\left.\mathrm{c}_{\mathrm{ij} k}\right\}$
2) OPE associativity:

$$
\left\langle\left(O_{i} O_{j}\right)\left(O_{k} O_{l}\right)\right\rangle=\left\langle\left(O_{j} O_{k}\right)\left(O_{i} O_{l}\right)\right\rangle \quad \forall i, j, k, l
$$

should fix the data \Rightarrow conformal bootstrap

Conformal blocks

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{x_{12}^{2 \Delta_{\phi}} x_{34}^{2 \Delta_{\phi}}}
$$

$$
g(u, v)=1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v)
$$

conf. blocks

Conformal blocks

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{x_{12}^{2 \Delta_{\phi}} x_{34}^{2 \Delta_{\phi}}}
$$

$$
g(u, v)=1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v)
$$

...and coordinates for them

...and coordinates for them

[Pappadopulo, S.R., Espin, Rattazzi 2012,
Hogervorst, S.R. 2013]

$$
\rho=\frac{z}{(1+\sqrt{1-z})^{2}}
$$

...and coordinates for them

Z-coord:

$$
x_{3}=1
$$

$$
\text { cut } \quad x_{4} \rightarrow \infty
$$

used to express conf. blocks in [Dolan, Osborn 2000,2003,20II]

[Pappadopulo, S.R., Espin, Rattazzi 2012, Hogervorst, S.R. 20I3]

$$
\rho=\frac{z}{(1+\sqrt{1-z})^{2}}
$$

$$
g_{O_{i}}\left(\rho=r e^{i \theta}\right)=\sum d_{k} r_{\text {known coeffs. }}^{\Delta_{i}+k} \times \operatorname{Geg}_{l_{k}}^{(D / 2-1)}(\cos \theta)
$$

D=2,Al.Zamolodchikov,fractional...

Convergence of conf. block decomposition

[Pappadopulo, S.R., Espin, Rattazzi 2012]

$$
\begin{aligned}
& g(u, v)=1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v) \\
& \sim \frac{1}{(1-r)^{2 \Delta \phi}} \times \frac{1}{(1-r)^{2 \Delta \phi}} \quad(r \rightarrow 1) \\
& \cdots-r
\end{aligned}
$$

Convergence of conf. block decomposition

[Pappadopulo, S.R., Espin, Rattazzi 2012]

$$
\begin{aligned}
& g(u, v)=1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v) \\
& \sim \frac{1}{(1-r)^{2 \Delta \phi}} \times \frac{1}{(1-r)^{2 \Delta \phi}} \quad(r \rightarrow 1) \\
& -\quad-r
\end{aligned}
$$

\Rightarrow convergence for all $\mathrm{r}<1$

+ polynomial bound on "weighted spectral density"

$$
\sum\left|c_{\phi \phi i}\right|^{2} \delta\left(E-\Delta_{i}\right) \sim E^{4 \Delta_{\phi}-1}
$$

Convergence of conf. block decomposition

[Pappadopulo, S.R., Espin, Rattazzi 2012]

$$
\begin{array}{rl}
g(u, v)= & 1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v) \\
\sim \frac{1}{(1-r)^{2 \Delta \phi}} \times \frac{1}{(1-r)^{2 \Delta \phi}} \quad(r \rightarrow 1) \\
\bullet-r & r
\end{array}
$$

\Rightarrow convergence for all $\mathrm{r}<1$

+ polynomial bound on "weighted spectral density"

$$
\sum\left|c_{\phi \phi i}\right|^{2} \delta\left(E-\Delta_{i}\right) \sim E^{4 \Delta_{\phi}-1}
$$

Cf. $\sum \delta\left(E-\Delta_{i}\right) \sim \exp \left(\# E^{1-1 / D}\right)$

Simplest bootstrap equation

$$
g(u, v)=1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v)
$$

crossing:

$$
u^{\Delta_{\phi}} g(v, u)=v^{\Delta_{\phi}} g(u, v)
$$

$$
(z \rightarrow 1-z)
$$

Simplest bootstrap equation

$$
g(u, v)=1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v)
$$

crossing:

$$
u^{\Delta_{\phi}} g(v, u)=v^{\Delta_{\phi}} g(u, v)
$$

$$
(z \rightarrow 1-z)
$$

Simplest bootstrap equation

$$
g(u, v)=1+\sum_{i}\left|c_{\phi \phi i}\right|^{2} g_{O_{i}}(u, v)
$$

crossing:

$$
u^{\Delta_{\phi}} g(v, u)=v^{\Delta_{\phi}} g(u, v)
$$

$$
(z \rightarrow 1-z)
$$

Numerical exploration

I) Identifying "swampland" in the space of CFT data
2) Study of theories at the "swampland boundary"

I. Charting out CFT "swampland"

[Rattazzi, S.R,Tonni,Vichi, 2008] + many subsequent works
Rule out large chunks of CFT data space which do not correspond to any CFT, because bootstrap equations do not allow a solution

Keyword: linear programming (way to enforce $p_{i}=\left|c_{\sigma \sigma i}\right|^{2} \geq 0$)
I. Charting out CFT "swampland"

Rule out large chunks of CFT data space which do not correspond to any CFT, because bootstrap equations do not allow a solution

Keyword: linear programming (way to enforce $p_{i}=\left|c_{\sigma \sigma i}\right|^{2} \geq 0$)

Roads to swampland:

increase gaps in the spectrum

Example of a gap study

Take any CFT with $G \supset S O(N)$ global symmetry

Example of a gap study

Take any CFT with $G \supset S O(N)$ global symmetry

lowest dimension singlet and $\square \square$

A central charge lower bound

Suppose know Δ_{σ},
can we say something about $C_{T} \propto\left\langle T_{\mu \nu} T_{\mu \nu}\right\rangle$?

A central charge lower bound

Suppose know Δ_{σ},
can we say something about $C_{T} \propto\left\langle T_{\mu \nu} T_{\mu \nu}\right\rangle$?
Hint: $\quad\langle\sigma \sigma \sigma \sigma\rangle \supset \frac{\Delta^{2}}{C_{T}} g_{\Delta=D, \ell=2}$

A central charge lower bound
Suppose know Δ_{σ},
can we say something about $C_{T} \propto\left\langle T_{\mu \nu} T_{\mu \nu}\right\rangle$?
Hint: $\quad\langle\sigma \sigma \sigma \sigma\rangle \supset \frac{\Delta^{2}}{C_{T}} g_{\Delta=D, \ell=2}$

II. Studying "swampland boundary"

Example: $\sigma \times \sigma=1+\epsilon+\ldots$
$\Delta_{\epsilon \uparrow} \xrightarrow{ }$

II. Studying "swampland boundary"

Example:

$$
\sigma \times \sigma=1+\epsilon+\ldots
$$

II. Studying "swampland boundary"

Example:

$$
\sigma \times \sigma=1+\epsilon+\ldots
$$

II. Studying "swampland boundary"

Example:

$$
\sigma \times \sigma=1+\epsilon+\ldots
$$

2D and 3D gap study $\quad \sigma \times \sigma=1+\epsilon+\ldots$

S.R.,Vichi 2009;El-Showk, Paulos 2012

El-Showk,Paulos,Poland,Simmons-Duffin, S.R,Vichi' I 2

2D and 3D gap study $\quad \sigma \times \sigma=1+\epsilon+\ldots$

S.R.,Vichi 2009;El-Showk, Paulos 20 I2

$(1 / 8,1)$
2D lsing model

El-Showk,Paulos,Poland,Simmons-Duffin, S.R,Vichi' 12

2D and 3D gap study $\quad \sigma \times \sigma=1+\epsilon+\ldots$

S.R.,Vichi 2009;El-Showk, Paulos 20 I2

$(1 / 8,1)$
2D Ising model

El-Showk,Paulos,Poland,Simmons-Duffin, S.R,Vichi' I 2

Other kinks

- same kink happens for any $2 \leq \mathrm{D}<4$; its position agrees with ε-expansion for $D \rightarrow 4$
[El-Showk, S.R,Vichi, work in progress]
- same kink happens for $\mathrm{O}(\mathrm{N})$ model in $\mathrm{D}=3$; its position agrees with I/N expansion for $\mathrm{N} \rightarrow \infty$
[Poland, Simmons-Duffin, work in progress]

Kinks have something to do with operator decoupling...

Spectrum of $\sigma \times \sigma$ OPE in 3D Ising model

Current knowledge (from RG methods):

Operator	$\operatorname{Spin} l$	Δ
ε	0	$1.413(1)$
ε^{\prime}	0	$3.84(4)$
$\varepsilon^{\prime \prime}$	0	$4.67(11)$
$T_{\mu \nu}$	2	3
$C_{\mu \nu \kappa \lambda}$	4	$5.0208(12)$

Spectrum of $\sigma \times \sigma$ OPE in 3D Ising model

Current knowledge (from RG methods):

Operator	$\operatorname{Spin} l$	Δ
ε	0	$1.413(1)$
ε^{\prime}	0	$3.84(4)$
$\varepsilon^{\prime \prime}$	0	$4.67(11)$
$T_{\mu \nu}$	2	3
$C_{\mu \nu \kappa \lambda}$	4	$5.0208(12)$

Assuming 3D Ising lives at the kink
\Rightarrow can determine all*) operators in $\sigma \times \sigma$ OPE + their OPE coeffs
[work in progress]
*) numerical work. In practice: all $\approx 20-30$

Warmup study for 2D Ising El-Showk, Paulos 2012

Other interesting developments

- Analytic results about $l \gg 1$ spectrum from bootstrap near light cone Fitzpatrick,Kaplan,Poland,Simmons-Duffin 2012, Komargodski, Zhiboedov 2012
- Bootstrap for conformal boundary conditions and defects
[Liendo, Rastelli, van Rees 2012 Gaiotto, Paulos, work in progress]
- Bootstrap for $<\mathrm{JJJJ}>$ and $<$ TTTT $>\quad$ [work in progress by Dymarsky]
- Bootstrap for SUSY theories
- $\mathbf{N}=1 \quad$ Poland,Simmons-Duffin 2010 + subsequent work
- $\mathrm{N}=4, \mathrm{~N}=2$ Beem, Rastelli, van Rees 2013 + work in progress

