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is one of the candidates of the constructive definition of string
theory.

Although we have no rigorous proof, there are a few

arguments which support this conjecture.

(i) World sheet regularization
The first argument is that the IIB matrix model can be
regarded as a matrix regularization of the Green-Schwartz
action in the Schild Gauge.



Green-Schwartz action in the Schild Gauge
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Regularization by matrix
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Furthermore we can expect that multistring states are
naturally embedded, if the size of the matrix is large
enough,
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The second argument is the relation between the loop
equation and the string field theory. Although it is not

complete, by combining the loop equations we can show that

the x' dependence of the Wilson loop correlators is
identical to that of the light-cone string field.

Wilson loop w(k#{--)}=Tr(Fexp{itj.dakﬂ(a}A” + fermion))
& creation annihilation operator of |%,(--)>

0 x* =x"+x° = const.




(iii) effective Lagrangian and gravity
The third argument is that the one-loop integral reproduces
the exchange of massless states of type IIB string theory,
which is reminiscent of open string field theory.
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(iv) finiteness of the path integral
Finally it should be mentioned that the finiteness of the path
integral for various operators
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On the other hand the IIB matrix model has the following
(i) compactified space

One problem is that the action

1.1 s
S——?Tr(E[A", A7 + W[4 ])

looks like an expansion around the flat space, and it is not
clear how to describe the compactified space.
= a. Still it is OK?

b. We need a modification?

c. It is correct, but there is a better formulation?
(ii ) method for calculation
Another problem is that we do not have a good way to
evaluate the correlation functions. Even the Monte Carlo
method is hard to apply because the fermion determinant is
not positive definite. Because of this difficulty we can not

easily determine the N-dependence of the physical scale
[
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1. The improved perturbation theory

However Nishimura and Sugino have obtained promising

results by using the improved perturbation theory, which was
originally applied to the BFSS M(-atrix) theory by Kabat and
Lifschytz.

Since the IIB matrix model
1

s
does not have a quadratic term, it seems impossible to apply
the perturbation theory.

However we can artificially add and subtract a quadratic
term S, to the action S such that S=(5-5,)+5, and
apply the perturbation theory regarding (S—S,) as the
perturbation.

S= Tﬂi[ﬁ,;ﬁ%@ﬂfﬁ]}



An example of the improved perturbation theory
In order to show the idea we consider a large-N one-matrix
model for a while

S

S = Tt )+—Tr(¢ ).

We introduce a formal expansion parameter g as

S g —r
e 4Tr(¢)+ T(@")

and set g=1 after applying the perturbative expansion.

The naive perturbation theory gives an expansion with

respect to f; . For example, the free energy is given by
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The n-th order perturbation which is obtained by truncating
this expression with respect to g up to order n and setting
g=1 18 depicted in the following graph.

-Llp?h -J--L--l‘-%'*i"

g=1 f(g=1m") converges only if m*>+12 . Therefore the
naive perturbation theory does not work if ml*i'\h_?..
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Improvement of the perturbation series

However as we will see, the improved perturbation theory

P
works even for m° =0,

In the naive perturbation theory we decompose the action as

:f, - T )+_W )
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perturbation unperturbed action

But in the improved perturbation theory we introduce an
artificial mass parameter m," and decompose the action as

g 1 x renormalization,
4 m 3 self-consistent approximation,
—=— +—7T,
N 4 TP(¢ ] ) r(¢ } mean-field approximation--
1 4 (’" e ”’uz) 2, My 2
=1Tr{¢ ks = Tr(¢ )+TTF(¢ )

perturbation unperturbed action
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In other words, we introduce the formal expansion
parameter g as

S _ 1o (’”E—mﬂz) 2 _”£ 2
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and expand € Nwithm&pecttﬂ g.
On the other hand the naive perturbation series was

givenby v = ST 6+ - Tr(g?)

Therefore in order to obtain the improved perturbation

series what we have to do is to replace m? in the naive
perturbation series f(g,m°) with m, + g(ﬂfz - mnz) and
reexpand it with respect tog:

Finprovea (&sm° smy" ) = f(g,m," + g(m* —m,?))

Note that fw depends not onlyon £and m® but also
on muz,whichiaananahguaufthamma]izaﬁunpoint.
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The concrete procedure is as follows.

We start with the naive pertﬁﬂmtinn series.
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We then apply the substitution and reexpand the result with

respect to g to obtain the improved series.
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Finally we truncate it up to order n and set g=1 to get the

improved perturbation series at order n.

I
Oth order: fomoes =—£|ﬂ3{"ﬁzl

i | 2 1 1 lmz_ﬂhz
1st order: ﬁw =—2|“E{""n J# _5%. ‘i %:

2nd order:

i mz-%lﬂg[m;]-i'(-— s

The behavior of this improved series for various values of

2
My is depicted in the following graphs.
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2
The improved perturbation series for various values of ™,

N
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It seems that for each value of ™, the improved series

converges on a finite domain of .

m!

2
mﬂ
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If we choose the value of ""’n2 =2 the improved perturbation
theory gives a convergent series even for the massless case
m’ =0, which corresponds to the strong coupling limit

£, (We have set g=1.)
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Free energy as a function of ™

We have found that we can tune “the renormalization point”

"’ai in such a way that the improved series converges well. In
order to avoid this tuning procedure we can regard the free

energy as a function of -'?'uz.

Here to be concrete we consider the massless case m? =0,

Namely we consider Jfimprowd (€ = I,m* =0, mul} as a function
of My .

By setting m” =0 in the previous expressions, we obtain the
improved series as a function of mu.1 as follows:

Oth order: /ot =— log(m,)

143 ]
1st order: fw ""—lﬂgl:mﬂ }+[_E-_+EJ
m,

2nd order: Suproes ——Iug{ "} [-__+_,]+[_ sy ]
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As is clear from the following graphs, there is a plateau
region where the function fimrowe: (€ =1m" =0,m,") stays at a
constant, and we can check it is close to the exact value.
Furthermore the plateau becomes more stable as we go to
higher orders, and the value converges to the exact one.
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Why do we have a plateau?

: 2
There is no rigorous proof, but it is expected since ™, is an
artificially introduced parameter and the physical
quantities should not depend on it.

This was stated by Stevenson some time ago (1981) as
“the principle of minimum sensitivity”, and his claim is that
i""u1 should be chosen as a stationary point of 7. (g.m".m").

a—ma—zfm[g,mz,mf}:ﬂ_

However it would be more precise to express this principle
in terms of “the plateau”, because in general there are many
extrema as we go to higher orders and it is the value of the

plateau that converges to the exact value.



2. Application to the IIB matrix model

Nishimura and Sugino

Kawai, Kawamoto, Kuroki, Matsuo and Shinchara

We now apply the improved perturbation theory to the IIB
matrix model. We add and subtract the most general
U(N)-invariant quadratic terms to the action:

1

S A A2
—=—=Tr([A*, A" 1)) - Z—Tr (YT *[4*,¥
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Here we have chosen the scale such that 2 N=1 jn
the action, and we have

S 1
N g;Nﬂ(4[x4" AT +-‘P1""[A‘" kd)

:T#TJ{[A”,AVF)—ETP@W[frTD ‘

We then have introduced the formal expansion
parameter 4 which counts the number of loops and is
set to 1 at the end.
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Here M,, and M5 correspond to mniin the previous
example. What we have to do now is the following.
(i)Calculate the free energy of the massive IIB matrix

model f(4,M,m) by the naive perturbation theory.

i__i M wi_i_z_ _.ﬂ H
- 4Tr{[A ,A°]) 5 rYrep44,. 21

+;—M#,,n(,4u“)+;—mmrr(¥rw ¥ )

(ii) Replace M,, > (1-A)M,, and Mg —> (L= A)M_,, in
f(LM,ﬂl),&ndra&xpanditwithreapecttn A to obtain
the improved series.

Simprovea (A Mym) = f(A, (1= A)M, (1 A)m)
Expand with respect to 4 up to order

nandset 4=1,
fwm}(M’m}’ fw[”(M:m}, fwm](M,m},"'

(E}Surchphhenuainthnmd M, and Mom , and
I s i iliaiany it



Step( i) and (i)

In principle the first step is only a matter of summing up
Feynman diagrams, and the second step is a simple
manipulation. But in order to reduce the calculation in the
first step we have used the following fact:

Suppose G(C) is the sum of the 2PI diagrams
expressed in terms of the exact propagator C,

and /(M) is the sum of all the vacuum diagrams
expressed in terms of the mass M . Then
G(C)and /(M) are related by the Legendre
transformation.



Sum of the 2PI diagrams

-y,
.....
¥
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Here C,, and H_uaﬂyr are the exact

propagators of A, and ¥ , respectively.
Legendre Transformation

1 0
EMFF - a(jﬁ"' G

1 0
—m, =———G
v 2 Ot oy

free energy as a function of M,, and M.s

1 1
f = G_EM#PCFF +Em¢uﬂ
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In this way we have calculated the following diagrams, and
obtained the free energy up to the 5th order level.
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Stepl i

As for searching plateaus, we have too many parameters

M. and ", which makes the search very difficult. In

order to reduce the number of parameters we impose various
symmetries on M,, and "* . Here we discuss the
following three symmetries as typical examples.

(1) SO(7)xS0(3) (We refer to this as SO(7) ansatz.)

We decompose the 10 dimensions into 7+3 and impose
SO(7)xS0(3) symmetry, which reduces the parameters
to

Mgo19, M\y=My=--=M,, and Mo =My =M.

(2) SO(4)xS0(3)xS0(3) xZ2 (SO(4) ansatz)

We decompose the 10 dimensions into 4+3+3, and in
addition to the rotational symmetry in each block we
impose an extra Z, symmetry that permutes the last
two blocks. The non-zero parameters are

My =ms-;m, M|1="'=M44 and M55=”'=M|um.




(3) SO(1)xS0(3)xS0(3)xS0(3) xZ3 (SO(1) ansatz)

We decompose the 10 dimensions into 1+3+3+3, and in
addition to the rotational symmetry in each block we
impose an extra Z; symmetry that permutes the last
three blocks. The non-zero parameters are

Myyq =Msgq =Mggg, M, and My ="=M,,.

Another problem for the plateau search is that the orders we
are considering (up to 5th order) are not high enough to
observe clear plateaus. Instead we list up all the extrema for
each order. For each extremum we evaluate the square size

1 v
of the eigenvalue distribution <7;77(4"4")> which is
proportional to the exact propagator. At the present order it
is not clear how these extrema will accumulate to a plateau

as we go to higher orders, but we can see clear differences
among the above three ansatz.
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First the SO(1) ansatz gives no extremum at any order of
the perturbation theory.

Secondly, the SO(7) ansatz gives one extremum at the 1st
order, two at the 3rd order and three at the 5th order. Two of
them are close to the value of Krauth-Nicolai-Staudacher, but
at this stage it is not clear where extrema will accumulate to
form a plateau as we go to higher orders.

extrema of free energy for SO(7) ansatz
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Square size for each extremum for SO(7) ansatz
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It seems that extremum with smaller free energy has larger
rotational asymmetry. But this tendency is not very strong
compared to the SO(4) ansatz.
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Thirdly, the SO(4) ansatz gives the same number of extrema
as the SO(7) ansatz. The free energy seems to be stable as in
the SO(7) ansatz. Again it is not clear where extrema will
accumulate to form a plateau as we go to higher orders.

extrema of free energy for SO(4) ansatz
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But the behavior of the square size is different from that of
the S8O(7) ansatz. The larger component seems to grow in
higher orders. Also the smaller component tends to shrink.

Square size for each extremum for SO(4) ansatz
1 b gl 1 | 1
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3. Breaking of rotational symmetry and spontaneous

formation of space-time

These results are consistent with the following conjecture we

made some time ago- Acka, Teo, Kawai, Kitazawna and Tada

The rotational symmetry is spontaneously broken to
S0(4). The eigenvalues of 4” spread along a four
dimensional hyperplane, which we can regard as our
space-time, In the large-N limit the size of the eigenvalue
distribution becomes infinite in four directions, while it
stays finite in the other directions.
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If it is true, we expect that the ratio  calculated by the

improved perturbation theﬁrj grows to infinity as we go to

higher orders, which is consistent with what we have seen.
We. have seen the patio -;& tewds te qrows te eghay
ordeys im  SOC4E) ansarz,

Understanding the symmetry breaking

There would be several ways to understand this symmetry
breaking. Among them the following two are simple and
seem to be realistic.

(1) phase of the fermion determinant

One is by Nishimura and Vernizzi. They pointed out that
the phase of the fermion determinant plays an important
role. The phase is generically non-zero, but it is zero if
some of the 4" ’s are linearly dependent. Therefore in the
path integral lower dimensional configurations are
enhanced in the sense of the stationary phase.
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(2) purely bosonic model

The other is by Vernizzi and Wheater. Recently they have
constructed a class of solvable models that show the
symmetry breaking explicitly, Their model consists of D

bosonic matrices 4“ ( 4 =1~D ), and the action is given
by

S=N f(T),

where 7" is the D-dimensional symmetric tensor
iy ]- ¥
defined by 7" :ET”{AFA ), and fis an O(D) invariant

function of 7" . This model is solvable in the large-N
limit, and shows various patterns of O(D) symmetry

breaking.
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4, Conclusion

The improved perturbation theory seems promising.
Although we need to go to higher orders to say something
more definite, the results at the present order are consistent
with the spontaneous breaking of the rotational symmetry.
Furthermore they seem to support our conjecture for having
four-dimensional space-time in the IIB matrix model.






