$\mathcal{N} = 1 \text{ FLUX VACUA:}$ GEOMETRY AND NON GEOMETRY

work with M.GRANA, R.MINASIAN, A.TOMASIELLO, D. WALDRAM hep-th/0609124 hep-th/0707 ...

INTRODUCTION

- Compact Minkowski type II vacua with RR/NS fluxes are relevant for
- → moduli stabilisation, supersymmetry breaking
- \rightarrow landscape of vacua
- 4*d* low energy effective sugra
- \rightarrow consistency of the embedding in string theory (compactness, large volume limit)
- 10*d* examples are all related to Calabi-Yau's
- \rightarrow conformal CY, compact versions of deformed conifold, T-duals ...
- Go beyond conformal CY's
 - use Generalised Complex Geometry
 - \rightarrow exhaustive search of $\mathcal{N} = 1$ Minkowski vacua on 6*d* nil and solvmanifolds (twisted tori)
 - \rightarrow non geometric backgrounds

SUPERSYMMETRIC SOLUTIONS

10d equations of motion $ds_{(10)}^2 = e^{2A(y)} ds_{(4)}^2 + ds_{(6)}^2$ $F_{(10)} = F_{(6)} + \operatorname{vol}_4 \wedge \lambda(*F_{(6)})$ \updownarrow

GENERALISED COMPLEX GEOMETRY

[hitchin 02; gualtieri 04]

• It treats tangent and cotangent bundle on the same footing

$X = (v + \xi) \in T(M) \oplus T^*(M)$				
	T	$T\oplus T^*$		
almost complex structure integrability	$J: J^{2} = -1_{d}$ $\pi_{+}[\pi_{-}(v), \pi_{-}(w)] = 0$	$\mathcal{J} : \mathcal{J}^2 = -1_{2d}$ $\Pi_+[\Pi(X), \Pi(Y)]_C = 0$		
Clifford algebra	Cliff(6)	Cliff(6,6)		
spinors	(0,q) forms	$\left(p,q ight)$ forms		
pure spinor	vacuum of Cliff(6): η_0	vacuum of Cliff(6,6): Φ		
	$ abla_m \eta_0 = 0$	$d\Phi = 0$		
	Calabi Yau	Generalised Calabi Yau		

• $[,]_C \rightarrow \text{Courant bracket}$

$$[v+\xi, w+\eta] = [v,w] + \left\{ \mathcal{L}_v \eta - \mathcal{L}_w \xi - \frac{1}{2} d(i_v \eta - i_w \xi) \right\}$$

SUSY VARIATIONS AND GENERALISED COMPLEX GEOMETRY

• Define the bispinors

$$\Phi_{+} = \eta_{+}^{1} \otimes \eta_{+}^{2\dagger} \quad \text{even forms} \qquad \epsilon_{1} = \zeta_{+} \otimes \eta_{+}^{1} + \zeta_{-} \otimes \eta_{-}^{1}$$
$$\Phi_{-} = \eta_{+}^{1} \otimes \eta_{-}^{2\dagger} \quad \text{odd forms} \qquad \epsilon_{2} = \zeta_{+} \otimes \eta_{\mp}^{2} + \zeta_{-} \otimes \eta_{\pm}^{2}$$

- pure spinors
- compatible spinors \rightarrow three common annihilators
- define a SU(3) \times SU(3) structure on $T \oplus T^*$

SU(3)	$\eta_+^1 = a\eta_+$	$\eta_+^2 = b\eta_+$	$\Phi_+ = \frac{a\bar{b}}{8}e^{-iJ}$
			$\Phi_{-} = -i\frac{ab}{8}\Omega$
SU(2)	$\eta^1_+ = a\eta_+$	$\eta_+^2 = bz \cdot \eta$	$\Phi_{+} = \frac{a\bar{b}}{8}\omega \wedge e^{z \wedge \bar{z}/2}$
			$\Phi_{-} = -i\frac{ab}{8}e^{-ij} \wedge z$
degenerate SU(2)	$\eta^1_+ = a\eta_+$	$\eta_{+}^{2} = c_1 \eta_{+} + c_2 z \cdot \eta_{-}$	$\Phi_{+} = \frac{a}{8}(\bar{c}_{1}e^{-ij} - i\bar{c}_{2}\omega) \wedge e^{z\wedge\bar{z}/2}$
			$\Phi_{-} = -i\frac{a}{8}(\bar{c}_2 e^{-ij} + i\bar{c}_1 \omega) \wedge z$

 Rewrite the SUSY variations as differential equations for the pure spinors on the internal manifold

• IIA $(d - H \wedge)(e^{2A - \phi} \Phi_{+}) = 0$ $(d - H \wedge)(e^{2A - \phi} \Phi_{-}) = e^{2A - \phi} dA \wedge \overline{\Phi}_{-} + \frac{i}{8}e^{3A} * \lambda(F_{A})$ with $F_{A} = F_{0} + F_{2} + F_{4} + F_{6}$ and $\lambda(F_{n}) = (-1)^{\operatorname{int}[n/2]}F_{n}$

• IIB

$$(d - H \wedge)(e^{2A - \phi}\Phi_{-}) = 0$$

$$(d - H \wedge)(e^{2A - \phi}\Phi_{+}) = e^{2A - \phi}dA \wedge \bar{\Phi}_{+} + \frac{i}{8}e^{3A} * \lambda(F_B)$$

with $F_B = F_1 + F_3 + F_5$

- General conditions for $\mathcal{N} = 1$ flux vacua
 - topological condition \rightarrow SU(3) \times SU(3) structure on $T \oplus T^*$

$$\Phi_+ = \eta_+^1 \otimes \eta_+^{2\dagger} \qquad \Phi_- = \eta_+^1 \otimes \eta_-^{2\dagger}$$

- integrability condition (SUSY)
 - one spinor is twisted closed

IIA/IIB $(d - H \wedge)(e^{2A - \phi} \Phi_{\pm}) = 0 \rightarrow$ twisted generalised Calabi Yau

• the RR fields act as torsion

IIA/IIB
$$(d - H \wedge)(e^{2A - \phi} \Phi_{\mp}) = e^{2A - \phi} dA \wedge \bar{\Phi}_{\mp} + \frac{i}{8} e^{3A} * \lambda(F_{A/B})$$

	zero fluxes	fluxes
	T	$T\oplus T^*$
pure spinor	η_0	Φ
integrability	$ abla_m\eta_0=0$	$\mathrm{d}\Phi=0$
	Calabi Yau	Generalised Calabi Yau

EQUATIONS OF MOTION

- The flux e.o.m follow from the pure spinor equations
 - RR fluxes
 - split into real and imaginary part

$$(d - H \wedge)(e^{2A - \phi}\Phi_2) = e^{2A - \phi}dA \wedge \bar{\Phi}_2 + \frac{i}{8}e^{3A} * \lambda(F) \qquad \swarrow \qquad (d - H \wedge)(e^{A - \phi}\operatorname{Re}\Phi_2) = 0$$
$$\searrow \qquad (d - H \wedge)(e^{3A - \phi}\operatorname{Im}\Phi_2) = \frac{1}{8}e^{4A} * \lambda(F)$$

• commute λ and *

$$\lambda[(d - H \wedge)(e^{3A - \phi} \mathrm{Im}\Phi_2)] = \mp (d + H \wedge)(e^{3A - \phi} \lambda[\mathrm{Im}\Phi_2)] = \mp \frac{1}{8}e^{4A} * F$$

- RR part is determined by metric and *B* field
- Recently proved also for the NS flux [koerber, tsimpis 07]

BIANCHI IDENTITIES AND NO-GO THEOREM

• Bianchi identities

• the scalar component ⇔ no-go theorem

$$\int \langle (d - H \wedge)F, \ e^{3A - \phi} \mathrm{Im}\Phi_2 \rangle = \frac{1}{8} \int e^{4A} \langle F, \ *\lambda(F) \rangle < 0 \longleftarrow \mathsf{TADPOLE}$$

- need for negative charge sources → O-planes
- individual terms may correspond both to O-planes and D-branes
- other components \rightarrow conditions on the possible cycles wrapped by branes and orientifolds
- Orientifold action

O3/O7 and O6	\rightarrow	$\Omega_{ m WS}(-)^{F_L}\sigma$	(IIA	$\sigma I = -I$)
O5/O9 and O4/O8	\rightarrow	$\Omega_{ m WS}\sigma$	(IIB	$\sigma I = I$)

03/07	O5	O6
$\sigma(\Phi_+) = -\lambda(\bar{\Phi}_+)$	$\sigma(\Phi_+) = \lambda(\bar{\Phi}_+)$	$\sigma(\Phi_+) = -\lambda(\Phi_+)$
$\sigma(\Phi) = \lambda(\Phi)$	$\sigma(\Phi) = -\lambda(\Phi)$	$\sigma(\Phi) = \lambda(\bar{\Phi})$

TWISTED TORI - NIL(SOLV)MANIFOLDS

• d-dimensional parallelisable manifolds $\rightarrow \exists d$ globally defined 1-forms

 $de^a = f^a_{bc}e^b \wedge e^c$ (or dual vectors $[E_b, E_c] = f^a{}_{bc}E_a$)

- Homogeneous spaces $\rightarrow f^a_{bc}$ are constant
- Structure constants of a real Lie algebra ${\mathcal G}$

$$d^2 e^a = 0 \quad \Rightarrow \quad f^a_{[bc} f^e_{d]a} = 0 \quad (\text{Jacobi identities})$$

Twisted identifications

 $M = \frac{G}{\Gamma} = \frac{\text{Lie Group}}{\text{discrete maximal subgroup}}$

G nilpotent (solvable) \Rightarrow Nil (Solv) manifold

Ex 3d Heisenberg algebra $(0, 0, k \times 12)$

$$\begin{aligned} de^{1} &= 0 \\ de^{2} &= 0 \\ de^{3} &= ke^{1} \wedge e^{2} \end{aligned} \right\} \implies \begin{cases} e^{1} &= dx^{1} \\ e^{2} &= dx^{2} \\ e^{3} &= dx^{3} + kx^{1} \wedge dx^{2} \\ (x^{1}, x^{2}, x^{3}) \sim (x^{1}, x^{2} + a, x^{3}) \sim (x^{1}, x^{2}, x^{3} + b) \sim (x^{1} + c, x^{2}, x^{3} - kcx^{1}) \end{aligned}$$

- Complete classification
 - nilmanifold \rightarrow 34 algebras in 6d
 - solvmanifold \rightarrow 182 algebras in 6d
- Compactness

look for M compact with discrete isotropy group ($\dim G = \dim M = 6$)

• nilmanifold

 $f_{ba}^{a} = 0$ and $f_{bc}^{a} \in \mathbb{Z} \rightarrow$ necessary and sufficient

• solvmanifold

 $f_{ba}^{a} = 0$ and $f_{bc}^{a} \in \mathbb{Z} \rightarrow \text{necessary}$ \exists sufficiency criteria \rightarrow algebraic groups 47 = 13 + 34 (nil) compact

- Curvature $R = -1/2 f_{abc} f_{abc}$
 - nilmanifold → negative curvature
 - solvmanifold → negative or zero curvature
- All nilmanifolds are Generalised Calabi Yau [cavalcanti, gualtieri 04]

TWISTED TORI AND $\mathcal{N} = 1$ VACUA

- Without NS and RR fluxes nilmanifolds are
 - generalised Calabi-Yau
 - not solutions of the SUGRA equations of motion (R < 0)
- Turn on fluxes and look for (at least) $\mathcal{N} = 1$ solutions
 - consider SU(3) and SU(2) structure pair of pure spinors
 - global solution \rightarrow large volume limit
 - \rightarrow left invariant forms
 - \rightarrow algebraic equations
 - local solutions \rightarrow rescale local ones

$$e^m \to e^{\sum_i (-1)^{sign_i(m)} A_i} e^m \qquad sign_i(m) = \begin{cases} +1 & \text{i-th source is along } e^m \\ -1 & \text{i-th source is orthogonal to } e^m \end{cases}$$

- Procedure to find global solutions
 - Determine the orientifold involutions compatible with a given algebra
 - Pure spinors
 - find a pure spinor $\Phi_1 \rightarrow (d H \wedge) \Phi_1 = 0$

(always \exists on nilmanifolds)

- \rightarrow compatible with the orientifold projection
- find a pure spinor $\Phi_2 \rightarrow \text{compatible with } \Phi_1$
 - (trivial structure group)

(no obstructions in finding a compatible spinor)

 \rightarrow compatible with the orientifold projection

 \rightarrow $(d - H \wedge) \operatorname{Re} \Phi_2 = 0$

the two spinors determine the metric and the B-field

- RR fluxes (tadpole)
 - compute $F_{\rm RR} \rightarrow (d H \wedge) {
 m Im} \Phi_2 = *F_{\rm RR}$
 - check Bianchi → smeared sources

 $(d - H \wedge)F_{\rm RR} = \sum_i Q_i(source) \operatorname{vol}_i$

SUMMARY OF SOLUTIONS

- Minkowski vacua
 - T-duals of conformal Calabi Yaus \rightarrow full solutions including the warp factor
 - Multi-source solutions \rightarrow delocalised solution (large volume only)

		IIA			IIB	
	algebras	O4	O6		O5	
		type 12	type 30	type 12	type 30	type 12
n	(0,0,0,12,13,23)		456			
n	(0,0,0,12,23,14-35)				(45 + 26)*	
n	(0,0,0,0,12,14+23)				56	56
n	(0,0,0,0,12,34)				56	56
n	(0,0,0,0,12,13)				56	56
n	(0,0,0,0,13 + 42,14+23)				56	56
n	(0,0,0,0,0,12+34)	6			56	56
n	(0,0,0,0,0,0,12)	6				
s	(25,-15,±45,∓35,0,0)		(136 + 246)* (146 + 236)*	(136 + 246)* (146 + 236)*		(13 + 24)* (14 + 23)*

- AdS vacua
 - IIA AdS_4 solutions \rightarrow generalised half flat manifolds

NON T-DUAL SOLUTION

• nilmanifold (0,0,0,12,23,14-35) with O5 in 45

• Pure spinors \rightarrow SU(3) structure

$$\Phi_{-} = -\frac{i}{8}\Omega \qquad \Omega = V^{1/2}(e^{1} - ie^{3}) \wedge (e^{2} + i\tau e^{6}) \wedge (e^{4} + ie^{5})$$

$$\Phi_{+} = \frac{1}{8}e^{-iJ} \qquad J = (-t_{1}e^{1} \wedge e^{3} + t_{2}\tau_{r}e^{2} \wedge e^{6} + t_{3}e^{4} \wedge e^{5})$$

• Fluxes → only RR 3-form

$$F_3 = -(\tau_i e^2 - |\tau|^2 e^6) \wedge \left(t_2(e^1 \wedge e^4 - e^3 \wedge e^5) + \frac{t_3}{\tau_r}(e^1 \wedge e^5 + e^3 \wedge e^4) \right)$$

• Tadpole

$$dF_3 = -2 |\tau|^2 \left(\frac{t_3}{\tau_r^2 t_1 t_2} \operatorname{vol1}^{1236} + \frac{t_2}{t_1 t_3} \operatorname{vol2}^{1345} \right)$$

 \rightarrow O5-planes along 45 and 26 (generated by { $\Omega_{WS} \sigma_1, \sigma_1 \sigma_2$ })

• Moduli (after the second O5 projection)

complex st.
$$\rightarrow \tau = \tau_r + i\tau_i$$
 Kähler $\rightarrow t_1, t_2, t_3$

- positive definite metric $t_i > 0$
- integrated Bianchi

$$t_{1} = \frac{|\tau|^{2}}{16g_{s}|\tau_{r}|}$$

$$t_{2}|\tau_{r}| = \frac{4\sqrt{g_{s}|\tau_{r}|}}{|\tau|}V^{1/2}$$

$$t_{3} = \frac{4\sqrt{g_{s}|\tau_{r}|}}{|\tau|}V^{1/2}$$

can have $g_s \ll 1$, $V \gg 1$ and all cycles large

• Complete solution with dilaton and warp factor is unknown \rightarrow pb with intersecting sources

NON GEOMETRY AND COMPACTIFICATIONS

- Non geometrical backgrounds appear naturally in string compactifications \rightarrow effective actions
 - T-duality invariant form of the IIA and IIB superpotentials

[shelton, taylor, wecht 05]

$$H_{abc} \stackrel{T_a}{\longleftrightarrow} f^a_{bc} \stackrel{T_b}{\longleftrightarrow} Q^{a_b}_c \stackrel{T_c}{\longleftrightarrow} R^{abc}$$

• Gaugings in SU(3) \times SU(3) effective actions \rightarrow torsion and NS fluxes are not enough

[grana, louis, waldram 06]

- Lower dimensional supergravities with non abelian gauge groups (generalised
 Scherck-Schwarz) reduction
 [hull, dabholkar 02; hull 04;...]
- What about the 10 d interpretation?

THE 4D ALGEBRA

• 4d effective actions

 \rightarrow the generalised fluxes appear in the gauge algebra of the vector fields

$$\begin{split} & [v_a, v_b] = H_{abc} X^c + f^c_{\ ab} v_c \\ & [v_a, X^b] = -f^b_{\ ac} X^c + Q^{bc}_{\ a} v_c \\ & [X^a, X^b] = Q^{ab}_{\ c} X^c + R^{abc} v_c \end{split} \qquad \begin{array}{ccc} v_a & \to & \text{isometries} \\ & X^a & \to & \text{B-field gauge transf.} \end{array} \end{split}$$

• 10d perspective

- → Courant bracket algebra of the section of the generalised tangent bundle E
- \rightarrow for parallelisable manifolds
 - T-duality is a symmetry of the sections of E
 - geometry and non geometry are in the relation to $T\oplus T^*$

A TOY MODEL: 3-TORUS WITH NS FLUX

• T^3 with a k units of NS flux

 $ds^{2} = dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2}$ $H = kdx^{1} \wedge dx^{2} \wedge dx^{3}$ $B = kx^{1} \wedge dx^{2} \wedge dx^{3}$

- Generalised Tangent Bundle of M (extension of T by T^*)
 - the fibers are $T \oplus T^*$ with transition functions in $GL(R,d) \times \Omega^{2,cl}$

$$X = x + \hat{\xi} \quad \text{and on } U_{\alpha\beta} \begin{cases} B_{\beta} = B_{\alpha} + dA_{\alpha\beta} \\ x_{\alpha} + \hat{\xi}_{\alpha} = x_{\beta} + \hat{\xi}_{\beta} - i_X dA_{\alpha\beta} \end{cases}$$

• relation to $T \oplus T^*$

$$(v+\xi)|_{U_{\alpha}} = v_{\alpha} + (\hat{\xi}_{\alpha} + i_v B_{\alpha}).$$

• a basis for the sections

$$(\{E_i\}; \{E^i\}) = (\partial_1, \partial_2 + kx^1 dx^3, \partial_3 - kx^1 dx^2; dx^1, dx^2, dx^3).$$

• The Courant bracket yields the algebra $H_{ijk} = k\epsilon_{ijk}$

$$\begin{bmatrix} E_i, E_j \end{bmatrix} = H_{ijk} E^k$$
$$\begin{bmatrix} E_i, E^j \end{bmatrix} = 0$$
$$\begin{bmatrix} E^i, E^j \end{bmatrix} = 0$$

- Perform T-dualities $\rightarrow O(2,2) \subset O(3,3)$ symmetries of the sections of E
 - T-duality in x^3 ($\partial_3 \leftrightarrow dx^3$)
 - new basis for E

$$(\{\tilde{E}_i\}; \{\tilde{E}^i\}) = (\partial_1, \partial_2 + kx^1 \partial_3, \partial_3; dx^1, dx^2, dx^3 - kx^1 dx^2)$$

• Courant bracket \rightarrow Heisenberg algebra ((0, 0, k12)

$$[E_i, E_j] = f_{ij}^k E_k$$
$$[E_i, E^j] = -f_{ik}^j E^k \quad \text{with } f_{12}^3 = k$$
$$[E^i, E^j] = 0$$

- all basis elements are well defined sections of $T \oplus T^*$
 - \rightarrow the reduction to $T \oplus T^*$ requires B = 0
 - \rightarrow nilmanifold (twisted torus)

$$ds^{2} = (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3} - kx^{1}dx^{2})^{2} \qquad f_{yz}^{x} = k$$

 T^2 fibration over $S^1 \rightarrow \text{coordinates}$ are patched with an SL(2, Z) transformation $(x^1, x^2, x^3) \sim (x^1, x^2 + 1, x^3) \sim (x^1, x^2, x^3 + 1) \sim (x^1 + c, x^2, x^3 - kx^2)$

- T-duality in x^2 ($\partial_2 \leftrightarrow dx^2$)
 - new basis

$$(\{\tilde{E}_i\};\{\tilde{E}^i\}) = (\partial_1, \partial_2, \partial_3; dx^1, dx^2 + kx^1\partial_3, dx^3 - kx^1\partial_2)$$

Courant bracket

$$[E_i, E_j] = 0$$

$$[E_i, E^j] = -Q_i^{jk} E_k \quad \text{with } Q_3^{12} = k$$

$$[E^i, E^j] = Q_k^{ij} E^k$$

- the 1-forms are well defined but not the vectors
 - \rightarrow no isomorphism with $T \oplus T^*$
 - \rightarrow new isomorphism via bi-vector (compatible with Buscher)

$$(v+\xi)|_{\alpha} = (x_{\alpha} + \xi \lrcorner \beta_{\alpha}) + \hat{\xi}$$

but no gluing conditions

 \rightarrow not a manifold for $x^1 \sim x^1 + 1$ (non geometrical)

$$ds^{2} = \frac{1}{1 + (kx^{1})^{2}}((dx^{3})^{2} + (dx^{2})^{2}) + (dx^{1})^{2} \qquad \beta^{23} = \frac{kx^{1}}{1 + (kx^{1})^{2}}$$

coordinates are patched with an O(2,2) transformation (T-fold) [hull 04]

CONCLUSIONS

- Generalised Complex Geometry is good framework to describe flux backgrounds
 - geometric characterisation
 - interpretation of non geometrical backgrounds
 - explicit construction of supersymmetric backgrounds
- Search for Minkowski vacua on twisted tori
 - fewer (new) vacua found than naively expected \rightarrow 1 nilmanifold and 4 models on the same solmanifold
 - all have intersecting sources and some moduli unfixed
- May also consider other options
 - non-algebraic groups
 - higher-dimensional algebras and continuous lattices
 - non-geometries