

THE
 RCFT ORIENTIFOLD ${ }^{66}$ LANDSCHAP"

EXPLORING THE LANDSCAPE

1986 (with Lerche, Lüst): many "vacua"

A few people: string theory must be wrong, or "just a framework". Most people: wait and see...
Some people: probably true, but who cares?
My conclusion: "anthropic landscape"

Present motivation

Landscape remains to a large extent unexplored.
Very few "standard model spectra" known.
Are there any generic features?
How many fit current data?

EXPLORING THE LANDSCAPE

1986 (with Lerche, Lüst): many "vacua"

A few people: string theory must be wrong, or "just a framework". Most people: wait and see...
Some people: probably true, but who cares?
My conclusion: "anthropic landscape"

Present motivation

Landscape remains to a large extent unexplored.
Very few "standard model spectra" known.
Are there any generic features?
How many fit current data?
"Is the standard model a plausible solution to the landscape and anthropic constraints?"

Orientifold Partition Functions

ORIENTIFOLD PARTITION FUNCTIONS

9 Closed $\frac{1}{2}\left[\sum_{i j} \chi_{i}(\tau) Z_{i j} \chi_{i}(\bar{\tau})+\sum_{i} K_{i} \chi_{i}(2 \tau)\right]$

Q Open $\frac{1}{2}\left[\sum_{i, a, n} N_{a} N_{b} A_{a b}^{i} \chi_{i}\left(\frac{\tau}{2}\right)+\sum_{i, a} N_{a} M_{a}^{i} \hat{\chi}_{i}\left(\frac{\tau}{2}+\frac{1}{2}\right)\right]$
i : Primary field label (finite range)
a : Boundary label (finite range)
χ_{i} : Character
N_{a} : Chan-Paton (CP) Multiplicity

COEFFICIENTS

9 Klein bottle

$$
K^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} U_{(m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

Q Annulus

$$
A_{\left[a, \psi_{a}\right]\left[b, \psi_{b}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} R_{\left[b, \psi_{b}\right]\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

9 Moebius

$$
M_{\left[a, \psi_{a}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{P_{m}^{i} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

$g_{J, J^{\prime}}^{\Omega, m}=\frac{S_{m 0}}{S_{m K}} \beta_{K}(J) \delta_{J^{\prime}, J^{c}}$

BOUNDARIES AND CROSSCAPS

Q Boundary coefficients

$$
R_{\left[a, \psi_{a}\right](m, J)}=\sqrt{\frac{|\mathcal{H}|}{\left|\mathcal{C}_{a}\right|\left|\mathcal{S}_{a}\right|}} \psi_{a}^{*}(J) S_{a m}^{J}
$$

9 Crosscap coefficients

$$
U_{(m, J)}=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i\left(h_{K}-h_{K L}\right)} \beta_{K}(L) P_{L K, m} \delta_{J, 0}
$$

Cardy (1989)
Sagnotti, Pradisi, Stanev (~1995)
Huiszoon, Fuchd, Schellekens, Schweigert, Walcher (2000)

Algebraic Choices

Q Basic CFT ($\mathrm{N}=2$ tensor, free fermions...) (Type IIB closed string theory)

9 Chiral algebra extension(*) May imply space-time symmetry (e.g. Susy: GSO projection). Reduces number of characters.

Q Modular Invariant Partition Function (MIPF) (*) May imply bulk symmetry (e.g Susy), not respected by all boundaries. Defines the set of boundary states (Sagnotti-Pradisi-Stanev completeness condition)
© Orientifold choice (*)
(*) all these choices are simple current related

TADPOLES \& ANOMALIES

Q Tadpole cancellation condition:

$$
\sum_{b} N_{b} R_{b(m, J)}=4 \eta_{m} U_{(m, J)}
$$

9 Cubic anomalies cancel

Q Remaining anomalies by Green-Schwarz mechanism

9 In rare cases, additional conditions for global anomaly cancellation*

MODELS

Vector-like: mass allowed by $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ (Higgs, right-handed neutrino, gauginos, sparticles....)

MODELS

SM "branes" (3 or 4)

$\mathrm{G}_{\mathrm{CP}} \supset \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

Chiral fermions $\rightarrow 3$ families

Criteria for distinguishing spectra

1. Chiral $G_{C P}$ spectrum ("chiral type"), e.g SU(5), Pati-Salam,
2. Massless $G_{C P}$ spectrum
3. Massless $G_{C P}$ spectrum +

Free Fermion Models*

The following real and complex free fermion models are accessible
(NSR) $\left(\mathrm{D}_{1}\right)^{9}$
(NSR) $\left(\mathrm{D}_{1}\right)^{7}(\text { Ising })^{4}$
(NSR) $\left(\mathrm{D}_{1}\right)^{5}$ (Ising) ${ }^{8}$
(NSR) $\left(\mathrm{D}_{1}\right)^{3}$ (Ising) ${ }^{12}$

685 MIPFs 3858 MIPFs
111604 MIPFs
$>2^{28}$ MIPFs
(1) One SM config, no tadpole solutions
(2) Nothing!

3 > 40000 MIPFs done, > 30 days, Nothing yet!
(*) with E. Kiritsis

GEPNER MODELS*

Q 168 tensor combinations(Susy extension)
95403 MIPFs (880 Hodge number pairs)
Q 49322 Orientifolds

Two scans:

with Dükstra, Huidzoon (2004/2005)

* 19 Chiral types ("Madrid models")
* 18 with tadpole cancellation
*211000 non-chirally distinct spectra (criterium 2)
with Anastasopulos, Dïkstra, Kiritsis (2005/2006)
* 19345 Chiral types
* 1900 with tadpole cancellation
* 1900 non-chirally distinct spectra (criterium 1)
(*)Also: Angelantonj et. al, Blumenbagen et. al., Aldazabal et. al, Brunner et al.....

The Madrid Model*

(*) Ibanez, Marchesano, Rabadan

Abelian Masses

Green-Schwarz mechanism

Axion-Vector boson vertex
-------NWM

Generates mass vector bosons of anomalous symmetries

$$
(e . g . B+L)
$$

But may also generate mass for non-anomalous ones

$$
(Y, B-L)
$$

A "MADRID" MODEL

Gauge group: Exactly $S U(3) \times S U(2) \times U(1)$! $[\mathrm{U}(3) \times \operatorname{Sp}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$, Massive B-L, No hidden sector]

A "MADRID" MODEL

Gauge group: Exactly $S U(3) \times S U(2) \times U(1)$! $[\mathrm{U}(3) \times \operatorname{Sp}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$, Massive B-L, No hidden sector]

RANK-2 TENSORS

Total number of Symmetric tensors in SM gauge groups

Total number of Anti-symmetric tensors in SM gauge groups

NO MIRRORS, NO RANK-2 TENSORS

(Left-right symmetric model)

U3 S2 S2 U1 S6 S4 S2

A CURIOSITY

$$
\text { Gauge group } \left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]
$$

U3 S2 U1 U1 U2

A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Truly hidden hidden sector

A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Free-field realization with (2) ${ }^{6}$ Gepner model

AN SU(5) MODEL

Gauge group is just SU(5)!

Top quark Yukawa's?

ONE IN HOW MANY?

$\frac{\text { Madrid configurations }}{\text { All 4-brane configurations }}=10^{-12}$
$\frac{\text { With tadpole solution }}{\text { All 4-brane configurations }}=3.8 \times 10^{-14}$
Dïkstra et.al. (2005)
$\frac{\text { Madrid configurations }}{\text { All SM configurations }}=1 / 6$
$\frac{\text { Madrid configurations with tadpole solution }}{\text { All tadpole solutions }} \sim 1 \times 10^{-9}$
T^{6} / Z_{6} orientifolds
$\frac{\text { Madrid configurations with tadpole solution }}{\text { All tadpole solutions }} \sim 1 \times 10^{-22}$

Holistic Wellness with Tachyons

A practical guide to the use of tachyons
Martima Bochnik \& Tomme Thomsen
HAEFA TAGHTON NGODHITA

NON-SUPERSYMMETRIC MODELS

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

9 Chiral algebra extension (non-susy)
Q Automorphism MIPF
Q Susy MIPF (non-susy extension)
Q Klein Bottle

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

9 Chiral algebra extension (non-susy)
Q Automorphism MIPF
Q Susy MIPF (non-susy extension)
9 Klein Bottle
*
(44054 MIPFs)
(40261 MIPFs)
\checkmark (186951 Orientifolds)

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

9 Chiral algebra extension (non-susy)
Q Automorphism MIPF
Q Susy MIPF (non-susy extension)
9 Klein Bottle
*
(44054 MIPFs)
(40261 MIPFs)
\checkmark (186951 Orientifolds)

Huge number of possibilities!

(*) with Beatriz Gato-Rivera

NEUTRINO MASSES

NEUTRINO MASSES*

9 In field theory: easy; several solutions.
Most popular:
add three right-handed neutrinos
add "natural" Dirac \& Majorana masses (see-saw)

$$
m_{\nu}=\frac{\left(M_{D}\right)^{2}}{M_{M}} ; \quad M_{D} \approx 100 \mathrm{MeV}, \quad M_{M} \approx 10^{11} \ldots 10^{13} \mathrm{GeV}
$$

Q In string theory: non-trivial. (String theory is much more falsifiable!).

Q Potentially anthropic.
(*) Ibañez, Schellekens, Uranga, arXiv:0704.1079, JHEP (to appear)
Blumenhagen, Cvetic, Weigand, bep-th/0609191
Ibañez, Uranga, bep-tb/0609213
Other ideas: see e.g. Conlon, Cremades; Giedt, Kane, Langacker, Nelson; Buchmuller, Hamaguchi, Lebedev, Ratz,

NEUTRINO MASSES IN MADRID MODELS

All these models have three right-handed neutrinos (required for cubic anomaly cancellation)

In most of these models:
B-L survives as an exact gauge symmetry
Neutrino's can get Dirac masses, but not Majorana masses (both needed for see-saw mechanism).

In a very small* subset, B-L acquires a mass due to axion couplings.
(*) 391 out of 10000 models with $\mathrm{SU}(3) \times \mathrm{Sp}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$ (out of 211000 in total)

B-L VIOLATION BY INSTANTONS

B-L still survives as a perturbative symmetry.
It may be broken to a discrete subgroup by instantons.

RCFT instanton boundary state M :
"Matter" boundary state m, change space-time boundary conditions from Neumann to Dirichlet.

Condition for B-L violation: $\quad I_{M \mathbf{a}}-I_{M \mathbf{a}^{\prime}}-I_{M \mathbf{d}}+I_{M \mathbf{d}^{\prime}} \neq 0$

Non-gauge (stringy, exotic) instanton:
CP multiplicity of the assocated matter brane $=0$
Q Does not introduce new anomalies/tadpoles
Q Suppression factor not related to gauge coupling strengths

$$
M_{M} \propto M_{s} e^{-\frac{1}{g_{M}^{2}}}
$$

ZERO-MODES

Majorana mass term $V^{c} V^{c}$ violates c and d brane charge by two units. To compensate this, we must have

$$
\begin{gathered}
I_{M c}=2 ; \quad I_{M d}=-2 \\
\quad \text { or } \\
I_{M d^{\prime}}=2 ; \quad I_{M c^{\prime}}=-2
\end{gathered}
$$

Furthermore there must be precisely two susy zeromodes to generate an F-term contribution.

And nothing else!

```
I
a'= boundary conjugate of a
```


ZERO-MODE INTEGRAL

Zero-mode/neutrino coupling

INSTANTON TYPES

Matter brane m	Instanton brane M
$U(N)$	$U(k)$
$O(N)$	$S p(2 k)$
$S p(2 N)$	$O(k)$

Matter/Instanton
zero modes: $0, \pm 2$
Instanton-Instanton

Possible for:

- $\mathrm{U}, \mathrm{k}=1$ or 2
$9 \mathrm{U}(\mathrm{k}): 4 \mathrm{Adj}$
(9) $\mathrm{Sp}, \mathrm{k}=1$
(9) $\mathrm{O}, \mathrm{k}=1,2$
$9 \mathrm{Sp}(2 \mathrm{k}): 2 \mathrm{~A}+2 \mathrm{~S}$
O $\mathrm{O}(\mathrm{k}): 2 \mathrm{~S}+2 \mathrm{~A}$
Only solution: $\mathrm{O}(1)$

INSTANTON SCAN

Can we find such branes M in the 391 models with massive B-L?
Q About 30.000 "instanton branes" ($\left.I_{M \mathbf{a}}-I_{M \mathbf{a}^{\prime}}-I_{M \mathbf{d}}+I_{M \mathbf{d}^{\prime}} \neq 0\right)$
Q Quantized in units of 1,2 or 4
(1 may give R-parity violation, 4 means no Majorana mass)
Q Some models have no RCFT instantons
Q 1315 instantons with correct chiral intersections

- None of these models has R-parity violating instantons.

Q Most instantons are symplectic in this sample.
9 There are examples with exactly the right number, non-chirally, except for the spurious extra susy zero-modes ($\mathrm{Sp}(2)$ instantons).

AN Sp(2) INSTANTON MODEL

$3 \times(\mathrm{V}, \mathrm{V}, 0,0 \quad, 0)$ chirality 3	
	$3 \times(\mathrm{V}, 0, \mathrm{~V}, 0,0)$ chirality -3
	$3 \times\left(\mathrm{V}, 0, \mathrm{~V}^{*}, 0,0\right)$ chirality -3
	$3 \times(0, V, 0, V, 0)$ chirality 3
	$5 \times(0,0, V, V, 0)$ chirality -3
	$3 \times\left(0,0, V, V^{*}, 0\right)$ chirality 3
	$1 \times(0,0, V, 0, V)$ chirality -1
	$1 \times(0,0,0, V, V)$ chirality 1
	$18 \times(0, V, V, 0,0)$
	$2 \times(\mathrm{V}, 0,0, \mathrm{~V}, 0)$
	$2 \times($ Ad, $0,0,0,0)$
	$2 \times\left(\begin{array}{llll}\text {, } & , 0 & , 0 & 0\end{array}\right)$
	$6 \times(\mathrm{S}, 0,0,0,0)$
	$14 \times(0, A, 0,0,0)$
	$6 \times(0,5,0,0,0)$
	$9 \times(0,0$,Ad, 0,0$)$
	$6 \times(0,0, A, 0,0)$
	$14 \times(0,0, S, 0,0)$
	$3 \times(0,00,0, A d, 0)$
	$4 \times(0,0,0, A, 0)$
	$6 \times(0,0,0, S, 0)$

AN Sp(2) INSTANTON MODEL

```
U3 S2 U1 U1 O
3x(V ,V ,0 ,0 ,0 ) chirality 3
3x ( V ,0 ,V ,0 ,0 ) chirality -3
3x(V ,0 , V* ,0,0 ) chirality -3
3x( 0,V ,0,V,0 ) chirality 3
5 x ( 0 ,0 ,V ,V ,0 ) chirality -3
3x(0 ,0,V,V* ,0 ) chirality 3
1 x ( 0 ,0 ,V ,0 ,V ) chirality -1
1\times( 0 ,0 ,0,V ,V ) chirality 1
18 x ( 0 ,V ,V ,0 ,0 )
2 x ( V ,0 ,0 ,V ,0 )
2 x ( Ad, 0 ,0 ,0 ,0 )
2 x ( A ,0 ,0 ,0 ,0 )
6x( S ,0 ,0 ,0 ,0 )
14 x ( 0 , , , , , , 0,0 )
6 x ( 0 ,S ,0 ,0 ,0 )
9 x ( 0 ,0 ,Ad, 0 ,0 )
6 x ( 0 ,0 ,A ,0 ,0 )
14\times(0 ,0 ,S ,0 ,0 )
    3x(0 ,0 ,0 ,Ad, 0 )
    4 x ( 0 ,0 ,0 ,A ,0 )
    6 x ( 0 ,0 ,0 ,S ,0 )
```


THE O1 INSTANTON

Type:
Dimension

U	S	U	U	U	O	0	U	O	0	0	U	S	S	0	S
3	2	1	1	1	2	2	3	1	2	3	1	2	2	2	--
V	0	V	0	0	0	0	0	0	0	0	0	0	0	0	0

chirality -3
$5 \mathrm{x}(\mathrm{O}, 0, \mathrm{~V}, \mathrm{~V} *, 0,0,0,0,0,0,0,0,0,0,0,0)$ chirality 3
$3 \mathrm{x}(\mathrm{V}, 0, \mathrm{~V} *, 0,0,0,0,0,0,0,0,0,0,0,0,0)$ chirality -3
$3 \mathrm{x}(0,0, V, V, 0,0,0,0,0,0,0,0,0,0,0,0)$ chirality -3
$3 \mathrm{x}(\mathrm{V}, \mathrm{V}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0)$ chirality 3
$3 \mathrm{x}(0, \mathrm{~V}, 0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0,0,0,0)$ chirality 3
$2 \mathrm{x}(0,0,0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0,0,0, \mathrm{~V})$ chirality 2
$12 \mathrm{x}(0,0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0,0,0,0, \mathrm{~V})$ chirality -2
$1 \mathrm{x}(0,0,0,0,0,0,0,0,0, V, 0,0,0,0,0, V)$
$2 \mathrm{x}(0,0,0,0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0,0, \mathrm{~V})$
$1 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0,0,0, \mathrm{~V}, \mathrm{~V})$
$2 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0, \mathrm{~V}, 0,0, \mathrm{~V}$)
$1 \mathrm{x}(0,0,0,0,0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0, \mathrm{~V})$
$3 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, S$)
$4 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0,0, \mathrm{~V}, 0, \mathrm{~V}$)
$2 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, A)$
$2 \mathrm{x}(\mathrm{V}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0, \mathrm{~V})$
$3 x(0,0,0,0, S, 0,0,0,0,0,0,0,0,0,0,0)$ chirality -1
$3 \mathrm{x}(0,0,0,0,0, \mathrm{~V}, 0,0,0,0,0, \mathrm{~V}, 0,0,0,0$) chirality 1
$1 \mathrm{x}(0,0,0,0, \mathrm{~A}, 0,0,0,0,0,0,0,0,0,0,0$) chirality -1
$2 \mathrm{x}(0,0,0,0, \mathrm{~V}, 0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0)$ chirality 2
$1 \mathrm{x}(0,0,0,0,0,0,0, \mathrm{~V}, 0,0,0,0,0,0, \mathrm{~V}, 0$) chirality -1
$1 \mathrm{x}(0,0,0,0, V, 0,0,0,0, V, 0,0,0,0,0,0)$ chirality -1
$1 \mathrm{x}(0,0,0,0,0,0,0,0, \mathrm{~V}, 0,0, \mathrm{~V}, 0,0,0,0)$ chirality 1
$\mathrm{x}(0,0,0,0,0,0,0,0,0,0, V, V, 0,0,0,0)$ chirality -1
$1 \mathrm{x}(0,0,0,0,0,0, V, 0,0,0,0, V, 0,0,0,0)$ chirality -1
$1 \mathrm{x}(0,0,0,0, \mathrm{~V}, \mathrm{~V}, 0,0,0,0,0,0,0,0,0,0)$ chirality -1
$1 \mathrm{x}(0,0,0,0, \mathrm{~V}, 0,0,0,0,0,0, \mathrm{~V}, 0,0,0,0)$ chirality 1
$1 \mathrm{x}(0,0,0,0, \mathrm{~V}, 0,0,0,0,0,0, \mathrm{~V}, 0,0,0,0)$ chirality -1
$3 \mathrm{x}(0,0,0,0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0, \mathrm{~V}, 0$) chirality 1
$1 \mathrm{x}(0,0,0,0,0,0,0, \mathrm{~V}, 0, \mathrm{~V}, 0,0,0,0,0,0)$ chirality 1
$2 \mathrm{x}(0,0,0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0, \mathrm{~V}, 0,0)$
$1 \mathrm{x}(\mathrm{Ad}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
$2 \mathrm{x}(0, S, 0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
$1 \times(0,0,0, A d, 0,0,0,0,0,0,0,0,0,0,0,0)$
$6 \mathrm{x}(0,0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0,0, \mathrm{~V}, 0,0$)
$1 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0,0,0, A, 0)$
$1 \mathrm{x}(0,0,0,0, A d, 0,0,0,0,0,0,0,0,0,0,0)$

CONCLUSIONS

9 Many desirable SM features can be realized in the RCFT orientifold landscape...

Q Chiral SM spectrum
Q No mirrors
Q No adjoints, rank-2 tensors
Q No hidden sector
Q No hidden-observable massless matter
Q Matter free hidden sector

- Exact $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

Q Ol instantons
....but not all at the same time.
Seems just a matter of statistics.
Q Neutrino masses from instantons: probably possible, but very rare in RCFT.

