Max Planck Institute for Mathematics California Institute of Technology

4d-2d correspondence

Sergei Gukov

based on:	arXiv:1302.0015 ("bottom-up approach")
	with A.Gadde and P.Putrov + "top-down approach"

Stainge 2013

- Class S:

2-manifold C

4d $\mathcal{N}=2$ theory T[C]
[D.Gaiotto, G.Moore, A.Neitzke]
[D.Gaiotto]
[L.F.Alday, D.Gaiotto, Y.Tachikawa]

- Class S:

2-manifold C

- Class R:

3-manifold M_{3}

4d $\mathcal{N}=2$ theory $\mathrm{T}[\mathrm{C}]$
[D.Gaiotto, G.Moore, A.Neitzke]
[D.Gaiotto]
[L.F.Alday, D.Gaiotto, Y.Tachikawa]
3d $\mathcal{N}=2$ theory $T\left[M_{3}\right]$

- Class S:

2-manifold $C \Rightarrow 4 d \mathcal{N}=2$ theory $\mathrm{T}[\mathrm{C}]$

- Class R:

3-manifold M_{3}
Sd $\mathcal{N}=2$ theory $T\left[M_{3}\right]$

Strings 2011

- Class $\mathrm{H}:$

4 -manifold M_{4}
$2 \mathrm{~d} \mathcal{N}=(0,2)$ theory
$T\left[M_{4}\right]$

Motivation

- Much richer structure than $(2,2)$ models (new branches of vacua, gauge dynamics...)
[I.Melnikov, C.Quigle, S.Sethi, M.Stern, 2012]
- $(0,2)$ mirror symmetry
see e.g. [I.Melnikov, S.Sethi, E.Sharpe, 2012]
- Membranes (ABJM) with boundary and defect walls
- Fusion of defect lines in 2d

Surface Operators in 4d $\mathcal{N}=1$ gauge theories

w/ D.Gaiotto and N.Seiberg

A half-BPS surface operator in $4 \mathrm{~d} \mathcal{N}=1$ gauge theory defines a half-BPS boundary condition in 3d $\mathcal{N}=2$ theory

Representations of BPS algebras

$\mathcal{H}_{\text {refined BPS }}^{\text {(closed) }}=$ algebra
Ω
[J.Harvey, G.Moore] [M.Kontsevich, Y.Soibelman]
[E.Gorsky, S.G., M.Stosic]
$\mathcal{H}_{\text {refined BPS }}^{\text {(open) }}=$ module over $\mathcal{H}_{\text {reitined BPS }}^{\text {(closed) }}$

Vafa-Witten partition function

[C.Vafa, E.Witten]

$$
\begin{gathered}
6 \mathrm{~d}(2,0) \text { theory } \\
\text { on } T^{2} \times M_{4}
\end{gathered}
$$

$\mathcal{N}=4$ super-Yang-Mills on M_{4}

$$
\begin{gathered}
2 \mathrm{~d}(0,2) \text { theory } T\left[M_{4}\right] \\
\text { on } T^{2}
\end{gathered}
$$

$Z_{v w}=\sum_{n}\left(x^{2} q^{n} \chi\left(\mathcal{M}_{n, c}\right)=\right.$ "flavored" elliptic genus

Good

 of the $(0,2)$ theory

Gleing News Report \#1:

- Discrete vs continuous basis
- Integration measure $=(0,2)$ vector multiplet superconfromal index

Gluing

Building blocks

S. Akbulut, 2012

Kirby diagrams

Intersection form on $H_{2}\left(M_{4} ; \mathbb{Z}\right)$:

$$
Q_{i j}= \begin{cases}\operatorname{lk}\left(K_{i}, K_{j}\right), & \text { if } i \neq j \\ a_{i}, & \text { if } i=j\end{cases}
$$

Plumbing graphs

Gluing rule \#2: $Z_{v w}=$ coset branching function

$\mathcal{N}=2$ quiver Chern-Simons theory

$\longleftrightarrow \quad S=\frac{1}{2 \pi} \int d^{3} x d^{4} \theta V_{i} \Sigma_{j}$
edge

$$
\begin{aligned}
S & =\frac{a}{4 \pi} \int d^{3} x d^{4} \theta V \Sigma \\
& =\frac{a}{4 \pi} \int(A \wedge d A-\bar{\lambda} \lambda+2 D \sigma)
\end{aligned}
$$

U(1) Chern-Simons at level a

cf. [D.Belov, G.Moore]
[A.Kapustin, N.Saulina]

[J.Fuchs, C.Schweigert, A.Valentino]

$\mathcal{N}=2$ quiver Chern-Simons theory

$\vdots \boldsymbol{a}^{ \pm \mathbf{1}}=\frac{1}{4 \pi} \int d^{4} \theta(\pm V \Sigma+2 \widetilde{V} \Sigma+(a \pm 1) \widetilde{V} \widetilde{\Sigma}+\ldots)$ integrate out $V=\frac{1}{4 \pi} \int d^{4} \theta(\pm \widetilde{V} \widetilde{\Sigma} \mp 2 \widetilde{V} \widetilde{\Sigma}+(a \pm 1) \widetilde{V} \widetilde{\Sigma}+\ldots)$

$$
=\frac{1}{4 \pi} \int d^{4} \theta(a \widetilde{V} \widetilde{\Sigma}+\ldots)
$$

3d Kirby moves

3d Kirby moves

$$
\mathcal{L}=\frac{1}{4 \pi} \int d^{4} \theta(2 V \widetilde{\Sigma}+a \widetilde{V} \widetilde{\Sigma}+\ldots)
$$

V is Lagrange multiplier
$\mathrm{Y}_{1}+\ldots+\mathrm{Y}_{s}$
(disjoint union)

Integrating out V makes \widetilde{V} pure gauge and removes all its Chern-Simons couplings

4-manifold M_{4}	2d (0,2) theory $T\left[M_{4}\right]$
handle slides	dualities of $T\left[M_{4}\right]$
boundary conditions	vacua of $T\left[M_{3}\right]$
3d Kirby calculus	dualities of $T\left[M_{3}\right]$
cobordism from M_{3}^{-}to M_{3}^{+}	domain wall (interface) between $T\left[M_{3}^{-}\right]$and $T\left[M_{3}^{+}\right]$
gluing	fusion
Vafa-Witten partition function	flavored (equivariant) elliptic genus
$Z_{V W}$ (cobordism)	branching function
instanton number	L_{0}
embedded surfaces	chiral operators
Donaldson polynomials	chiral ring relations

4d Gravity = A-model

Nikita Nekrasov
Maxim Kontsevich
Max-Planck-Institut für Mathematik, Bonn ute of Theoretical and Experimental Physics, 117259, Moscow, and University of California, Berkeley Laboratory of Physics, Harvard University, Cambridge, MA 021

4D Pachner moves

