

Max Planck Institute for Mathematics California Institute of Technology

4d-2d correspondence Sergei Gukov

based on: arXiv:1302.0015 ("bottom-up approach") with A.Gadde and P.Putrov + "top-down approach"

• <u>Class S:</u>

4d $\mathcal{N} = 2$ theory T[C]

[D.Gaiotto, G.Moore, A.Neitzke] [D.Gaiotto] [L.F.Alday, D.Gaiotto, Y.Tachikawa]

Motivation

• Much richer structure than (2,2) models (new branches of vacua, gauge dynamics...)

[I.Melnikov, C.Quigle, S.Sethi, M.Stern, 2012]

• (0,2) mirror symmetry

see e.g. [I.Melnikov, S.Sethi, E.Sharpe, 2012]

- Membranes (ABJM) with boundary and defect walls
- Fusion of defect lines in 2d

Surface Operators in 4d $\mathcal{N} = 1$ gauge theories

w/ D.Gaiotto and N.Seiberg

A half-BPS surface operator in 4d $\mathcal{N} = 1$ gauge theory defines a half-BPS boundary condition in 3d $\mathcal{N} = 2$ theory

Representations of BPS algebras

Vafa-Witten partition function

 $Z_{vw} = \sum_{n} (x) q^{n} \chi(\mathcal{M}_{n,c}) = \text{``flavored'' elliptic genus}$ of the (0,2) theory **Good**

- Gluing News Report #1:
- Discrete vs continuous basis
- Integration measure = (0,2) vector multiplet superconfromal index

Building blocks

S. Akbulut, 2012

Kirby diagrams

Intersection form on $H_2(M_4; \mathbb{Z})$:

$$Q_{ij} = \begin{cases} \operatorname{lk}(K_i, K_j), & \text{if } i \neq j \\ a_i, & \text{if } i = j \end{cases}$$

$\mathcal{N} = 2$ quiver Chern-Simons theory

[J.Fuchs, C.Schweigert, A.Valentino]

$\mathcal{N} = 2$ quiver Chern-Simons theory

$$\overset{a\pm 1}{\longrightarrow} \overset{\pm 1}{\longrightarrow} = \frac{1}{4\pi} \int d^4\theta \left(\pm V\Sigma + 2\widetilde{V}\Sigma + (a\pm 1)\widetilde{V}\widetilde{\Sigma} + \ldots \right)$$

integrate out
$$V = \frac{1}{4\pi} \int d^4\theta \left(\pm \widetilde{V}\widetilde{\Sigma} \mp 2\widetilde{V}\widetilde{\Sigma} + (a\pm 1)\widetilde{V}\widetilde{\Sigma} + \ldots \right)$$

$$> a \qquad = \frac{1}{4\pi} \int d^4\theta \left(a \widetilde{V} \widetilde{\Sigma} + \ldots \right)$$

••••

3d Kirby moves

Integrating out V makes \widetilde{V} pure gauge and removes all its Chern-Simons couplings

4-manifold M_4	2d (0,2) theory $T[M_4]$
handle slides	dualities of $T[M_4]$
boundary conditions	vacua of $T[M_3]$
3d Kirby calculus	dualities of $T[M_3]$
cobordism	domain wall (interface)
from M_3^- to M_3^+	between $T[M_3^-]$ and $T[M_3^+]$
gluing	fusion
Vafa-Witten	flavored (equivariant)
partition function	elliptic genus
Z_{VW} (cobordism)	branching function
instanton number	L_0
embedded surfaces	chiral operators
Donaldson polynomials	chiral ring relations

4d Gravity = A-model

Nikita Nekrasov

MAXIM KONTSEVICH

Max-Planck-Institut für Mathematik, Bonn ute of Theoretical and Experimental Physics, 117259, Moscow, and University of California, Berkeley Laboratory of Physics, Harvard University, Cambridge, MA 021

