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cast of characters:
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This talk will be organized in three short sections:

I.  What is moonshine?

II.  Enter K3 and BPS States

III.  String duality, Calabi-Yau threefolds,
and modular forms

The first two are just review of material that may 
be unfamiliar to many of you.
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1.  Monstrous Moonshine

Moonshine is a still mysterious relationship between 
natural objects from two distinct realms of mathematics:

finite groups and modular forms.

By ~1980, the classification of simple finite groups was in 
sight.  In the final result, there are 18 infinite series and 26 

sporadics.  The last and largest of the latter, the
Fischer-Griess Monster, was just discovered and being 

explored in the early 1980s.
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Sporadic Groups

The 26 finite simple groups that don’t 
come in ∞-families.

|M|~8×1053

largest Mathieu group 
~2×109

Sunday, April 7, 13

Tuesday, April 9, 13
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The first nontrivial representation of the Monster occurs in 
dimension 196,883.

John McKay noticed an interesting coincidence.  Recall the 
definition of modular functions and forms: Modular Forms

A modular form f(τ) transforms “covariantly” under a subgroup Γ of SL(2,R).

upper-half plane

fundamental 
domain of Γ

f(τ) :

Sunday, April 7, 13

A common example: consider SL(2,Z) acting on the UHP 
via fractional linear transformations:

⌧ ! a⌧+b
c⌧+d ⌘ A · ⌧

Then a modular function is a meromorphic function which 
satisfies:

f(A · ⌧) = f(⌧)

f(A · ⌧) = (c⌧ + d)kf(⌧)

while a modular form of weight k satisfies instead:
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modular function:

modular form:
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These beasts pop up everywhere in string theory, for two 
reasons: worldsheet modular invariance and space-time S-

duality symmetries.
String theory is good at producing 

automorphic forms!

eg. The SL(2,Z) symmetry of the partition function. 

time

SL(2,Z)

modular under 
SL(2,Z)

q-series
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A basic result says that any modular function can be 
written as a rational function of 

John McKay, taking a break from hard work on sporadic 
groups in the late 1970s, came across this expansion in a 

number theory paper.  He noticed:

j(⌧) =
1

q
+ 744 + 196, 884 q + 21, 493, 760 q2 + · · ·

q = e2⇡i⌧

196, 884 = 196, 883 + 1

21, 493, 760 = 21, 296, 876 + 196, 883 + 1

. . .

dims of irreps
of Monster!
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What McKay noticed was:
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At some level, one can answer the question of why as 
follows:

Strings in the Leech lattice background: 

R24/ΛLeech

The Partition Function = J(τ)

ΛLeech

Co1 Z/2
Monster

Monstrous 
Moonshine

Sporadic Symmetry

Modular Symmetry

String Theory
explains Monstrous Moonshine.

Frenkel, Lepowsky, Meurman;
Dixon, Ginsparg, Harvey;

Borcherds
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Given this field theory, if we compute the partition function 
twisted by elements of the symmetry group:

Now the point is the following.  Let us imagine the modular 
function j is being generated by a partition function of a 2d 

CFT on a torus.  If we twist the boundary conditions:

h

0

@ a b
c d

1

A

����������⇥ hdgc

g gahb

Modular properties

Indeed, standard orbifold arguments suggest that 
under a modular transformation

For twining genus: h=1. Thus to get same diagram 
need:

‣ c=0 mod N=o(g)
‣ a=1 mod N=o(g)   [actually gcd(a,N)=1 sufficient]

Thursday, July 19, 12

we should still get a modular form for a subgroup of the 
modular group that preserves the form of the BC.

Thus, any conjecture for the decompositions is subjected 
to many checks, because the spaces of these modular 

forms are quite constrained.
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j(⌧)� 744 = dim(V�1) q�1 +
P1

i=1 dim(Vi) qi

But if the Monster M has a natural action on V, this also 
suggests that we can fruitfully study the McKay-Thompson 

series:

ch⇢(g) = Tr(⇢(g)), g 2 M

Tg(⌧) = chV�1(g) q
�1 +

P1
i=1 chVi(g) q

i

For each conjugacy class in M (there are 194), we get such 
a series.
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Twisting by g, we’d expect to find, instead of j, the McKay-
Thompson series:

Friday, June 21, 13



The fact that these are modular with the expected 
properties is strong evidence for the conjectured 
decomposition of the Hilbert space in terms of 

representations of the Monster, and would be testable
even without the explicit construction of the CFT.

j(⌧)� 744 = dim(V�1) q�1 +
P1

i=1 dim(Vi) qi

But if the Monster M has a natural action on V, this also 
suggests that we can fruitfully study the McKay-Thompson 

series:

ch⇢(g) = Tr(⇢(g)), g 2 M

Tg(⌧) = chV�1(g) q
�1 +

P1
i=1 chVi(g) q

i

For each conjugacy class in M (there are 194), we get such 
a series.
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Lesson:  When a modular form with suggestive coefficients 
appears, should check twining genera also to really 

convince oneself any kind of moonshine is at work...
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While the story relating Monstrous Moonshine to a 
particular 2d CFT is beautiful to be sure, it has seemed a 

peculiarity. 

II.  Enter K3 and BPS States

K3 serves as the simplest nontrivial
example of Calabi-Yau compactification.

It has also played a central role in
string dualities since the mid 1990s.
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The K3 sigma model is in general a highly nontrivial 
interacting (4,4) supersymmetric theory.  Index information 

can be useful when the theory cannot be solved.

The most famous example:

E3 

E2 

E1 

0 

E 

xo  xo  xo  

xo  xo  

xo  

xo o  

x = boson 

o = fermion 

 

As you vary couplings, the finite energy states can move 
around at will.  But notice that states can join or leave E=0 

only in pairs!  So:

Tr(�1)F = nB � nF

is an invariant, the “Witten index.”
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The hero of this part of our story is a more refined 
invariant that can be defined in 2d theories with at least 

(0,2) supersymmetry: the elliptic genus.

Lets assume the left movers and right movers both enjoy  
N=2 SUSY.  The N=2 algebra requires:

{Q+
R, Q

�
R} = L0 = HR

The one-loop partition function is:

Z(q, �L, �R) = TrH(�1)F qHL q̄HRei�LJL+i�RJR

Thursday, June 20, 13
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Now, the N=2 algebra has irreducible highest weight 
representations (think of  Verma modules...).  Let us say 

that these are denoted by 

R↵, R̄↵

for the left/right N=2.  Then we can write:

Z =
P

↵ TrR↵(�1)FL qHL ei�LJL TrR̄↵
(�1)FR q̄HRei�RJR

However, except in very special CFTs, we cannot solve for 
the full partition function.  (It contains e.g. the spectrum of 

the space-time theory).
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So we can consider sacrificing some information to get an 
index, which will be computable.

* If we set 
�L = �R = 0

we basically get the Witten index.  Not a lot of info.

* However, we can consider setting only say

�R = 0

Then the right-moving bit of the sum becomes:

TrR̄↵
(�1)FR q̄HR

Thursday, June 20, 13
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So we only get contributions from right-moving ground 
states!  (The elliptic genus can be defined for theories with 

only right-moving N=2 SUSY, since its all we use here).

It reduces then to the function:

This is clearly a more refined invariant than the Witten 
index - in fact, it is a modular form.

The elliptic genus of the worldsheet theory counts space-
time BPS states.

Z(q, �L, 0) =
P0

↵ TrR↵ (�1)FL qHL ei�LJL (�1)FR

Thursday, June 20, 13

In the K3 sigma model, the elliptic genus counts (a 
weighted sum of ) space-time BPS states arising in the

string compactification to 6d.
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K3 compactifications of type II strings to 6d have played a 
central role in the theory.  Many string dualities hinge on 

these compactifications.  K3 also plays a role in AdS/CFT, in 
the canonical example of AdS3/CFT2 duality.

The elliptic genus was computed by Eguchi, Ooguri, 
Taormina and Yang in 1989.  It is:

�K3(⌧, z) = TrRR

�
qL0� c

24 yJL (�1)F
�

q = e2⇡i⌧ , y = e2⇡iz

Thursday, June 20, 13
The result they found:

�K3(⌧, z) = 8
4X

i=2

✓i(⌧, z)2

✓i(⌧, 0)2

The thetas are the classical Jacobi theta functions, whose q-
expansions one can look up in Mathematica.

Representations of the N=4 worldsheet algebra are 
labelled by conformal spin h and an SU(2) quantum number
I.  Expanding the elliptic genus in terms of multiplets of the 

left-moving N=4 yields:
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�K3

(⌧, z) = 20 chshort

1/4,0(⌧, z)� 2 chshort

1/4,1/2(⌧, z) +
P1

n=1

An chlong

1/4+n,1/2(⌧, z)

The values of the As are given by:

Eguchi, Ooguri, and Tachikawa noticed this in 2010, and 
conjectured a “Mathieu Moonshine” relating K3 

compactification to the sporadic group M24.

A1 = 90 = 45+ 45

A2 = 462 = 231+ 231

A3 = 1540 = 770+ 770

dims of irreps
of M24!
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Much further work has elucidated and generalized the EOT 
conjecture.  

It needs to be emphasized that as yet, there is no explicit 
realization of a physically relevant CFT which “explains” the 

full moonshine.  In fact, there is a proof that (4,4) sigma 
models on K3 never admit the full M24 symmetry.

Cheng; Gaberdiel, Hohenegger, Volpato;
Eguchi, Hikami; Cheng, Duncan, Harvey;

Taormina, Wendland; Gannon; ...

Here, we ask a different question.  Does some evidence of 
moonshine persist in vacua with less supersymmetry?

We focus on 4d N=2 string vacua.
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III.  String duality, Calabi-Yau threefolds, and modular forms

Such vacua arise in two simple avatars, related by duality:

Heterotic strings on 
K3xT2

Type IIA on Calabi-Yau
threefolds

Z

K3
c2(V1) + c2(V2)

⌘ n1 + n2 = 24

  The Hirzebruch surface is a        bundle over        .P 1 P 1

Size of  “base” of fibration
maps to heterotic dilaton

Can we find evidence for similar moonshine in the 
spectrum of BPS states of this much wider class of

theories?

Thursday, June 20, 13

elliptic fibration over

Fn, n1 = 12 + n, n2 = 12� n

SK, Vafa;
Ferrara, Harvey, Strominger, Vafa

They can be lifted to 6d dualities in F-theory. Morrison,
Vafa

dilaton S size of base P 1
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There is a web of such vacua with various possible 
unHiggsed gauge groups and Coulomb branches, familiar 

also from studies of N=2 field theory.  Dual descriptions of 
the heterotic gauge groups involve singular Calabi-Yau

spaces.

Bershadsky,
Intriligator,

SK, Morrison,
Sadov, Vafa

In plain English, we need to choose 24 instantons 
distributed between the two E8s.

Diagram 1: Higgs Tree

SU(3)2 ← Sp(3) ← SU(6) ← SO(12)
↓

↓ SO(11) ← E7

↓ ↓
↓ ↓ SU(5) ← SO(10) ← E6

↓ ↓
SO(9) ← F4

↓ ↓ ↓ ↓
SO(8)
↓

↓ Sp(2) ← SU(4) ← SO(7)
↓ ↓

↓ SU(3) ← G2

↓
SU(2)2 ← SO(4) → SU(2)

4.1. Unbroken E7 gauge symmetry

There is a subspace of the Higgs moduli space with unbroken E7 when the 12 + n

instantons are in commutant H = SU(2). The dimension of this subspace, according to

(4.1), is 2n + 21. In addition to these neutral hypermultiplets, it follows from (4.2) that

there are (n + 8) 1
2 -hypermultiplets in the 56 of E7. The codimension of this space of

enhanced E7 is given by the Higgs mechanism to be (n + 8)( 1
2)(56) − 133 = 28n + 91,

leading to the expected total dimension of 30n + 112.

Consider now F-theory with an E7 geometric singularity. According to table 1, this

is the case when ord(f) ≥ 3, and ord(g) > 5. The F-theory moduli associated with the

E8 with 12 + n instantons satisfying these conditions are the terms ord(f) = i = 3 and

ord(g) = j = 5 in (2.3), i.e. the terms f8+n and g12+n. The number of moduli associated

with these terms, subtracting one, as always, to account for the rescaling of z1 mentioned

earlier, is (13 + n) + (9 + n)− 1 = 2n + 21. This is exactly the dimension found above for

enhanced E7 gauge symmetry, which is a strong check of the proposed F-theory/heterotic

duality.

The E7 matter can be seen by considering the discriminant on the E7 locus:

∆ = z9
1

(
4f3

8+n(z2) + o(z1)
)
. (4.3)

18

For each choice of instanton numbers, one has a “Higgs 
tree” of possible unbroken gauge groups and matter 

contents.

Thursday, June 20, 13
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the standard embedding we can conclude that there is Mathieu moonshine based on the

enhanced worldsheet supersymmetry, this is a priori not clear for other cases. In [37] we

compute twining genera for simple K3 conformal field theories with a variety of different

instanton embeddings and only (0,4) worldsheet supersymmetry. We successfully identify

certain symmetries of the CFT with conjugacy classes of M24 and therefore expect Mathieu

moonshine for all instanton embeddings. Since the values of n1,2 can only be varied by

non-perturbative transitions in the heterotic string, this is a much stronger result than any

statement about the standard embedding.

2.2 Threshold corrections and the new supersymmetric index

The new supersymmetric index [38] is defined by

Znew =
1

η(q)2
TrRJ0e

iπJ0qL0−c/24q̄L0−c̄/24 , (2.3)

where TrR means that the trace is taken over the Ramond sector of the (c, c̄) = (22, 9)

internal CFT associated to the K3× T 2 factor plus the E8 ×E8 gauge bundle. The extra

factor of 1
η2 arises from the two extra 4d space-time bosons that are present in light-cone

gauge string theory.

The new supersymmetric index is a natural object in 4d N = 2 heterotic compactifications

because it counts the number of BPS states. As discussed in §3 of [27], morally speaking,

Znew = −2i

[

∑

BPS vectors

q∆q̄∆̄ −
∑

BPS hypers

q∆q̄∆̄
]

. (2.4)

Therefore, any special properties or moonshine exhibited by Znew reflect on important

properties of the BPS states in the compactified string theory.

Universal threshold corrections to gauge and gravitational couplings can be expressed in

terms of this index [24]. As described there and studied in greater depth in [27–29], one

finds

∆gauge/grav =

∫

d2τ

τ2

[

−
i

η(q)2
TrR

(

J0e
iπJ0qL0−c/24q̄L0−c̄/24Fgauge/grav

)

− bgauge/grav

]

. (2.5)

Here,

Fgauge = Q2 −
1

8πτ2
, Fgrav = E2(q)−

3

πτ2
≡ Ê2(q) , (2.6)

where Q is some generator of a simple factor in the gauge group, and E2 is the second

Eisenstein series (see appendix A for its definition and our conventions). bgauge/grav are the

constant beta function coefficients that will not play an important role in the following.
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This quantity is particularly interesting because one can 
show that  “morally”:
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A good quantity to look at is the  “new supersymmetric 
index” of the heterotic (0,4) conformal field theory:

Cecotti,
Fendley,

Intriligator,
Vafa

Harvey,
Moore
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Beyond morals, it also shows up in the 1-loop threshold 
corrections to the space-time theory:

the standard embedding we can conclude that there is Mathieu moonshine based on the

enhanced worldsheet supersymmetry, this is a priori not clear for other cases. In [37] we

compute twining genera for simple K3 conformal field theories with a variety of different

instanton embeddings and only (0,4) worldsheet supersymmetry. We successfully identify

certain symmetries of the CFT with conjugacy classes of M24 and therefore expect Mathieu

moonshine for all instanton embeddings. Since the values of n1,2 can only be varied by

non-perturbative transitions in the heterotic string, this is a much stronger result than any

statement about the standard embedding.

2.2 Threshold corrections and the new supersymmetric index

The new supersymmetric index [38] is defined by

Znew =
1

η(q)2
TrRJ0e
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internal CFT associated to the K3× T 2 factor plus the E8 ×E8 gauge bundle. The extra

factor of 1
η2 arises from the two extra 4d space-time bosons that are present in light-cone

gauge string theory.

The new supersymmetric index is a natural object in 4d N = 2 heterotic compactifications

because it counts the number of BPS states. As discussed in §3 of [27], morally speaking,

Znew = −2i

[

∑
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∑
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]

. (2.4)

Therefore, any special properties or moonshine exhibited by Znew reflect on important

properties of the BPS states in the compactified string theory.

Universal threshold corrections to gauge and gravitational couplings can be expressed in

terms of this index [24]. As described there and studied in greater depth in [27–29], one

finds

∆gauge/grav =

∫
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τ2

[
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i
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)
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]

. (2.5)

Here,

Fgauge = Q2 −
1

8πτ2
, Fgrav = E2(q)−

3

πτ2
≡ Ê2(q) , (2.6)

where Q is some generator of a simple factor in the gauge group, and E2 is the second

Eisenstein series (see appendix A for its definition and our conventions). bgauge/grav are the

constant beta function coefficients that will not play an important role in the following.
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θ4(q, y) =
∞
∑

n=−∞

(−1)nq
n2

2 yn , (A.4)

where q = e2πiτ and y = e2πiz. Whenever the y-dependence is not specified, we have set

y = 1, for example θi = θi(q) = θi(q, 1) and likewise for the other functions defined below.

We also use the Dedekind η(q) function

η(q) = q
1
24

∞
∏

n=1

(1− qn) , (A.5)

and the Jacobi–Eisenstein series E4(q, y) and E6(q, y), of index 1, defined by

E4(q, y) =
1

2

(

θ2(q, y)
2θ62 + θ3(q, y)

2θ63 + θ4(q, y)
2θ64
)

, (A.6)

E6(q, y) = −
1

2

(

θ2(q, y)
2θ62(θ

4
3 + θ44) + θ3(q, y)

2θ63(θ
4
2 − θ44)− θ4(q, y)

2θ64(θ
4
2 + θ43)

)

.

Lastly we define the quasimodular Eisenstein series

E2(q) = 1− 24
∞
∑

n=1

nqn

1− qn
= 1− 24

∞
∑

n=1

σ1(n)q
n , (A.7)

and the non-holomorphic modular form Ê2(q) = E2(q) − 3/(πτ2), where σk(n) =
∑

d|n d
k

is the sum of the k-th powers of the divisors of n.

The Eisenstein series E4(q) = E4(q, 1) and E6(q) = E6(q, 1) can likewise be expanded as

E4(q) = 1 + 240
∞
∑

n=1

n3qn

1− qn
= 1 + 240

∞
∑

n=1

σ3(n)q
n ,

E6(q) = 1− 504
∞
∑

n=1

n5qn

1− qn
= 1− 504

∞
∑

n=1

σ5(n)q
n . (A.8)

Finally let us recall that a modular form of weight k (with trivial multiplier system) satisfies

f

(

aτ + b

cτ + d

)

= (cτ + d)kf(τ), for all

(

a b

c b

)

∈ SL(2,Z) , (A.9)

and the Dedekind η function has weight 1/2 (and a non-trivial multiplier system), while

Ê2, E4 and E6 transform as modular forms with weight 2, 4 and 6, respectively.
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the standard embedding we can conclude that there is Mathieu moonshine based on the

enhanced worldsheet supersymmetry, this is a priori not clear for other cases. In [37] we

compute twining genera for simple K3 conformal field theories with a variety of different

instanton embeddings and only (0,4) worldsheet supersymmetry. We successfully identify

certain symmetries of the CFT with conjugacy classes of M24 and therefore expect Mathieu

moonshine for all instanton embeddings. Since the values of n1,2 can only be varied by

non-perturbative transitions in the heterotic string, this is a much stronger result than any

statement about the standard embedding.

2.2 Threshold corrections and the new supersymmetric index

The new supersymmetric index [38] is defined by

Znew =
1

η(q)2
TrRJ0e

iπJ0qL0−c/24q̄L0−c̄/24 , (2.3)

where TrR means that the trace is taken over the Ramond sector of the (c, c̄) = (22, 9)

internal CFT associated to the K3× T 2 factor plus the E8 ×E8 gauge bundle. The extra

factor of 1
η2 arises from the two extra 4d space-time bosons that are present in light-cone

gauge string theory.

The new supersymmetric index is a natural object in 4d N = 2 heterotic compactifications

because it counts the number of BPS states. As discussed in §3 of [27], morally speaking,

Znew = −2i

[

∑

BPS vectors

q∆q̄∆̄ −
∑

BPS hypers

q∆q̄∆̄
]

. (2.4)

Therefore, any special properties or moonshine exhibited by Znew reflect on important

properties of the BPS states in the compactified string theory.

Universal threshold corrections to gauge and gravitational couplings can be expressed in

terms of this index [24]. As described there and studied in greater depth in [27–29], one

finds

∆gauge/grav =

∫

d2τ

τ2

[

−
i

η(q)2
TrR

(

J0e
iπJ0qL0−c/24q̄L0−c̄/24Fgauge/grav

)

− bgauge/grav

]

. (2.5)

Here,

Fgauge = Q2 −
1

8πτ2
, Fgrav = E2(q)−

3

πτ2
≡ Ê2(q) , (2.6)

where Q is some generator of a simple factor in the gauge group, and E2 is the second

Eisenstein series (see appendix A for its definition and our conventions). bgauge/grav are the

constant beta function coefficients that will not play an important role in the following.
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It follows that we expect 
Because the measure d2τ

τ22
is modular invariant, and we expect the threshold corrections to

also be modular invariant, it follows that

− τ2
i

η(q)2
TrR

(

J0e
iπJ0qL0−c/24q̄L0−c̄/24Fgauge/grav

)

(2.7)

must be modular invariant.

Focusing on the gravitational threshold and pulling the factor of Fgrav out of the trace in

(2.5), we find that τ2Znew should be a (non-holomorphic) modular form of weight -2 (with

a pole at the infinite cusp). For the case of compactifications on K3× T 2 without Wilson

lines, the new supersymmetric index further factorizes as

Znew = −2i
1

η(q)2
ΘΓ2,2

η(q)2
GK3 . (2.8)

Here, we have defined the sum over windings and momenta on the torus

ΘΓ2,2(q, q̄;T, U, T̄ , Ū) =
∑

p∈Γ2,2

q
1
2p

2
L q̄

1
2p

2
R =

∑

p∈Γ2,2

q
1
2 (p

2
L−p2R)e−2πτ2p2R

=
∑

mi,ni∈Z

e2πiτ(m1n1+m2n2)−
πτ2
T2U2

|TUn2+Tn1−Um1+m2|2 , (2.9)

where T and U are the moduli that determine the metric and Kalb–Ramond field (or NSNS

B-field) on the two torus. One can show (c.f. for example, equations (2.1.52) and (2.1.53)

of [39]) that ΘΓ2,2 is invariant under τ → τ + 1 (since Γ2,2 is an even lattice), and that

τ2ΘΓ2,2 is modular invariant. The latter follows from Poisson resummation using the fact

that Γ2,2 is unimodular. Therefore, we find that GK3 as defined in (2.8) should transform

under the modular group such that GK3
η(q)4 has weight -2.

One can now show by elementary reasoning that GK3, and hence Znew, is uniquely deter-

mined:

• The definition of Znew in (2.3) together with the existence of the bosonic string tachyon

at L0 = 0 and the fact that the left moving central charge is c = 22 tells us that Znew has

a 1
q pole.

• The same is true of GK3
η(q)4 , since ΘΓ2,2 has only non-negative powers of q.

• Removing the 1
q pole by multiplying through by η(q)24, we find that η(q)20GK3 must be a

holomorphic modular form of weight 10. Up to multiplication by a constant factor, there

is a unique such form, which is E4E6. We recall the definition of the two Eisenstein series

E4 and E6 in the appendix in equation (A.8).

6

to be modular invariant.
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Focusing on the case of the gravitational threshold:

GK3
⌘(q)4It follows that         has weight -2.
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Using the facts that :

*         has a 1/q poleZnew

* This must come from        because the torus sum has 
only positive powers  

GK3
⌘4

* Then             must be a holomorphic modular form of 
weight 10

⌘20GK3

we find that 

GK3 = E4(q)E6(q)
⌘20(q)

independent of the choice of gauge bundles on K3.

See also:
Lopes Cardoso, Curio, Lust;

Stieberger;....
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The normalization can be fixed by e.g. requiring 
cancellation of the 6d gravitational anomalies.

This universal structure contains a factor:

These characters arise for the standard embedding from the twelve free fermions. These

fermions lead to a manifest SO(12) gauge group that is enhanced to E7. The extra factors

of q1/4 in the third and fourth term in (2.13) account for the fact that in the heterotic

string we also have to sum over anti-periodic boundary conditions while the elliptic genus

of K3 is defined by a trace over the Ramond sector only.

Following [36] we define N = 4 Virasoro characters

chh=1/4,l=0(q, y) = −
iy

1
2θ1(q, y)

η(q)3

∞
∑

n=−∞

(−1)nq
1
2n(n+1)yn

1− qny
, (2.15)

and

chh=n+1/4,l=1/2(q, y) = qn−1/8 θ1(q, y)
2

η(q)3
. (2.16)

These are the elliptic genera of the short and long representations of the N = 4 supercon-

formal algebra.

Now one can expand Zelliptic
K3 (q, y) as follows

Zelliptic
K3 (q, y) = 24 chh=1/4,l=0(q, y) +

∞
∑

n=0

Anchh=n+1/4,l=1/2(q, y) , (2.17)

with

An = −2, 90, 462, 1540, 4554, 11592, ... . (2.18)

One recognizes the first few coefficients as simply related to the dimensions of irreducible

representations of M24 [6], while the higher coefficients can be decomposed in a way which

is fixed by requiring the twining genera to behave appropriately [8–11].

Due to the relation between the new supersymmetric index and the elliptic genus of K3

(2.13) it is clear that the new supersymmetric index can be expanded in a similar way.

Using our result from the last section we write

Znew = −2iΘΓ2,2

E4(q)E6(q)

η(q)24
≡

i

2
ΘΓ2,2

E4(q)

η(q)12
×G(q) . (2.19)

Then we can expand G(q) = −4E6/η12 as

G(q) = 24gh=1/4,l=0(q) + gh=1/4,l=1/2(q)
∞
∑

n=0

Anq
n (2.20)

where

gh=1/4,l(q) =
(

chSO(12)
s + chSO(12)

c

)

chh=1/4,l(q,−1)
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Then we can expand G(q) = −4E6/η12 as
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n=0

Anq
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where

gh=1/4,l(q) =
(

chSO(12)
s + chSO(12)

c
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chh=1/4,l(q,−1)

8+ q1/4
(

chSO(12)
b + chSO(12)

v

)

chh=1/4,l(q,−q
1
2 )

− q1/4
(

chSO(12)
b − chSO(12)

v

)

chh=1/4,l(q, q
1
2 ) . (2.21)

Importantly, the An take again the values given in (2.18).

As we have argued in the previous subsection, in the absence of Wilson lines the new

supersymmetric index takes always the form (2.19) so that the above expansion is also

possible for instanton embeddings for which the world sheet symmetry is N = (0, 4). Thus

we have found that for the case without Wilson lines and arbitrary instanton embeddings

the new supersymmetric index and therefore the BPS states (2.4) have a decomposition in

terms of dimensions of irreducible representations of M24.

2.4 Compactifications with Wilson lines

In this subsection we discuss the case where we embed all instantons in the first E8 and

keep track of the eight Wilson lines moduli V i, i = 1, . . . , 8 for the second E8. For the

standard embedding one finds [27] that the supersymmetric index takes the form

Znew =
i

2

ΘΓ10,2(q, q̄;T, U, V
i, T̄ , Ū , V̄ i)

η(q)12

[(

chSO(12)
s + chSO(12)

c

)

Zelliptic
K3 (q,−1) (2.22)

+
(

chSO(12)
b + chSO(12)

v

)

q
1
4Zelliptic

K3 (q,−q
1
2 )−

(

chSO(12)
b − chSO(12)

v

)

q
1
4Zelliptic

K3 (q, q
1
2 )
]

,

with

ΘΓ10,2 =
∑

p∈Γ10,2

q
1
2p

2
L q̄

1
2p

2
R =

∑

p∈Γ10,2

q
1
2 (p

2
L−p2R)e−2πτ2p2R (2.23)

=
∑

mj ,nj∈Z

bi∈Γ8,0

e
2πiτ(m1n1+m2n2+

1
2

∑
i b

2
i )−

πτ2
T2U2−

1
2

∑
i(V

i
2 )2

|(TU− 1
2

∑
i(V

i)2)n2+Tn1−Um1+m2+biV i|2
,

where Γ8,0 denotes the E8 root lattice. Note that p2L − p2R is the length squared of the

vector (bi;m1,−n1;n2, m2) with respect to the signature (10, 2) inner product and p2R is

proportional to the inner product of this vector with the moduli vector defined in (2.10)

of [27].

Since the K3 elliptic genus appears in (2.22) exactly as in (2.13) in the previous subsection

we can again expand the new supersymmetric index and find coefficients that are related

to the dimensions of representations of M24. Such an expansion is possible for arbitrary

embeddings of all instantons in the first E8 gauge group since we have only replaced

9
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dims of irreps
of M24!
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How does this modular form manifest itself in the dual 
Calabi-Yau geometries?

* The 1-loop threshold corrections determine the 1-loop 
prepotential in the heterotic theory.

* In the dual Calabi-Yau compactification, one should then 
focus on the prepotential in the limit

Here, κABC are the triple intersection numbers of M , χ(M) is the Euler character, and

nd1,...,dh1,1
gives the instanton counting of genus 0 and multi-degree dA. The polylogarithm

Lik is defined as Lik(x) =
∑∞

n=1
xn

nk .

The Hirzebruch surface Fn is a P1 bundle over P1, and for this reason, the elliptic Calabi-

Yau over Fn always has at least three Kähler moduli. Viewing Fn as a P1 bundle over P1,

these are the moduli controlling the sizes of the two P1s tB1 , tB2 , and a fiber modulus tF .

In the heterotic dual, these three ‘universal’ moduli correspond to the heterotic dilaton

S, and to the T and U moduli parametrizing the Kähler and complex structure of the

T 2. Additional vector multiplet moduli exist at generic points in moduli space if n is such

that maximal Higgsing of either E8 is impossible; this happens for n ≥ 3. We will not

be concerned with these additional moduli in this section; activating them corresponds to

turning on Wilson lines.

Therefore, we shall be interested in the Calabi-Yau threefolds M dual to the maximally

Higgsed heterotic models (with a given n) with all Wilson lines turned off. For these

theories, the expansion of the prepotential (3.1), as well as its higher-genus analogues, can

be further refined. Let us write the free energy of the topological string with target M as

F (gs, t
A) =

∞
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g2g−2
s F (g)(tA) . (3.2)

F (0) coincides with the N = 2 prepotential F II . The F (g) for g ≥ 1 control the couplings of

the operators (F grav
+ )2g−2R2

+ [43], where the + subscripts denote the self-dual parts, F grav

is the field strength of the graviphoton and R denotes the Riemann tensor.

In the duality with heterotic strings, the overall volume of the base P1, controlled by tB1 ,

is dual to the heterotic dilaton S. This follows from the results of [44], if we view the space

as a K3 fibration. Hence, we will work in the limit:

Perturbative heterotic limit : tB1 → ∞, qB1 ≡ e−2πtB1 → 0 . (3.3)

To make use of the beautiful results of [34, 35], we do a double expansion of the F (g)(qA)
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F (g)(qA) =
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f (g)
k,l (qF ) q

k
B1
qlB2

. (3.4)

The question of determining the prepotential and its higher-genus analogues now reduces to

finding the functions f (g)
k,l (qF ). The terms which can be compared to perturbative heterotic

computations are those with k = 0.
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it has been shown that the coefficient “functions” are 
of the form 

The recent papers [34, 35], building on [45, 46] and other earlier works, found a set of

recursion relations which determine the f (g)
k,l . Because they are functions of qF , it transpires

that the f (g)
k,l are actually quasi-modular forms with weight depending on k, l as well as the

integer n parametrizing which Hirzebruch surface Fn appears as the base.

More precisely, the result of [34, 35] states

f (g)
k,l (qF ) =

(

q
1
24
F

η(qF )

)2p(k,l)

P2g−2+p(k,l)(E2(qF ), E4(qF ), E6(qF )), (3.5)

where P2g−2+p(k,l) is a quasi-modular form of weight 2g − 2 + p(k, l) and

p(k, l) =
k

2

∫

M

c2(M) ∧ J2 +
l

2

∫

M

c2(M) ∧ J1 . (3.6)

Here, J1 and J2 are the harmonic (1,1) forms appearing in the expansion of the Kähler

form that control the real parts of tB1 and tB2 , respectively.
1 Furthermore, the f (g)

k,l (qF )

satisfy the following recursion relation when M is the fibration over Fn for n = 0, 1, 2: 2

∂f (g)
k,l

∂E2
=

1

24

g
∑

h=0

k
∑

s=0

l
∑

t=0

(ns(k − s)− s(l − t)− t(k − s))f (g−h)
s,t f (h)

k−s,l−t

−
1

24
(2kl + (n− 2)k − 2l − nk2)f (g−1)

k,l , (3.7)

where we take the E2-derivative of functions f (g)
k,l as given in (3.5) by differentiating the

function P2g−2+p(k,l)(E2, E4, E6) with respect to the first argument. To compare to the

heterotic string results of §2, we want to focus on one-loop computations in the heterotic

string-coupling expansion. We should therefore study terms in the prepotential indepen-

dent of qB1 .

The simplest non-trivial term we can study is then f (0)
0,1 (qF ). The recursion relation (3.7)

tells us that
∂f (0)

0,1

∂E2
= 0 . (3.8)

Using the fact that
∫

c2(M) ∧ J1 = 24 (which follows from the discussion in e.g. [44]), we

find from (3.5) that f (0)
0,1 should be fixed entirely by determining a modular form of weight

10. As mentioned before, such a form is unique up to multiplication by a constant and

is given by E4(qF )E6(qF ). Fixing the overall normalization by comparing with the known

Gromov–Witten invariants one finds [34]

f (0)
0,1 (qF ) = −

1

4π3

qFE4(qF )E6(qF )

η(qF )24
. (3.9)

1Note that although k counts the powers of qB1
it appears as coefficient of

∫

M
c2(M) ∧ J2 in (3.6).

2We thank E. Scheidegger for helping us fix minor typos in [34, 35].
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heterotic string results of §2, we want to focus on one-loop computations in the heterotic

string-coupling expansion. We should therefore study terms in the prepotential indepen-

dent of qB1 .

The simplest non-trivial term we can study is then f (0)
0,1 (qF ). The recursion relation (3.7)

tells us that
∂f (0)

0,1

∂E2
= 0 . (3.8)

Using the fact that
∫

c2(M) ∧ J1 = 24 (which follows from the discussion in e.g. [44]), we

find from (3.5) that f (0)
0,1 should be fixed entirely by determining a modular form of weight

10. As mentioned before, such a form is unique up to multiplication by a constant and

is given by E4(qF )E6(qF ). Fixing the overall normalization by comparing with the known

Gromov–Witten invariants one finds [34]

f (0)
0,1 (qF ) = −

1

4π3

qFE4(qF )E6(qF )

η(qF )24
. (3.9)

1Note that although k counts the powers of qB1
it appears as coefficient of

∫

M
c2(M) ∧ J2 in (3.6).

2We thank E. Scheidegger for helping us fix minor typos in [34, 35].

12The same modular form appears!

It previously appeared in an integrand of a 1-loop 
amplitude.  Here, it appears as a function of space-time

moduli in the type II model.
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However, computing the one-loop heterotic prepotential in 
the same limit, using the result for the new supersymmetric 

index, one indeed finds:

=
1

2π

∫

d2τ

τ2
(−iZE8

new − b(E8)) +
1

π
Re(log[J(iT )− J(iU)])

+
b(E8)

2π
(log[2T1U1] + 4Re [log(η(iT )η(iU))]) . (4.9)

The integral
∫

d2τ

τ2
(−iZE8

new − b(E8)) (4.10)

is evaluated explicitly in appendix A of [27]. One finds [27] that the one-loop prepotential

f 1−loop(T, U) = p(U, T )−
1

4π3

∑

k>0,l∈Z
k=0,l>0

c(kl)Li3
(

e−2π(kT+lU)
)

(4.11)

solves the differential equation, where p(U, T ) is a specific cubic polynomial that is not

relevant for us. Here, the coefficients c(m) are defined by

E4E6

η24
=
∑

m≥−1

c(m)qm =
1

q
− 240 + · · · , and c(m) = 0 ∀m < −1 . (4.12)

Using the identification qB2 = e−2π(T−U), qF = e−2πU , we can expand the heterotic prepo-

tential3

F het = . . .−
1

4π3
qF qB2

∑

l≥−1

c(l)qlF +O(qB1 , q
2
B2
) . (4.13)

Comparing (3.10) with (4.13), we see that the perturbative heterotic corrections as a

function of the moduli T and U match perfectly with the type IIA worldsheet instanton

sum over rational curves which don’t wrap the P1 dual to the heterotic dilaton, at least in

the leading order of qB2 .

4.2 Other values of n

The previous section shows that the M24 multiplicities encoded in the integrand for the

one-loop threshold corrections in the heterotic theory indeed map directly over to the M24

multiplicities visible in counts of rational curves, for the case n = 12. A similar proof

goes through for all other values of n. If we embed n1 instantons in the first E8 and n2

instantons in the second E8 so that the second E8 is broken to some subgroup G, one finds

for the new supersymmetric index with a Q2(G)− 1
8πτ2

insertion (cf. equation (2.4) in [33])

ZG
new = −

1

12
ΘΓ2,2

(

(E2 −
3

πτ2
)E4E6 −

n1
24E

2
6 −

n2
24E

3
4

η24

)

3The base modulus tB1
is proportional to the dilaton S but there is no canonical geometric way to

identify the dilaton [49]. This does not matter to us since we work to zeroth order in qB1
.
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Perfect agreement!

c.f. Kaplunovsky, Louis; de Wit, Kaplunovsky, 
Louis, Lust; Harvey, Moore
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Summary of other results:

* One can check twining genera for certain simple M24 
conjugacy classes in orbifold limits of models with various 

n.  We have some positive results.

* One can find evidence for moonshine also in heterotic 
models with all instantons in one E8 and generic Wilson 

lines in the other.

* Results indicating moonshine in higher genus curve 
counts can also be seen.

Very many questions remain.  For more details
see the paper that appeared today!

Friday, June 21, 13


