Strings 2013

Seoul, Korea July 24

Comments on BPS States in $\mathrm{N}=4 \mathrm{SYM}$

Xi Yin
Harvard University
based on C.-M. Chang, XY [1305.6314]

The problem: count 1/16 BPS states in $\mathrm{N}=4 \mathrm{SYM}$

Earlier effort: Kinney, Maldacena, Minwalla, Raju, Berkooz, Reichmann, Simon, Kim, Lee, Grant, Grassi, ...

Why is it interesting?

There are large 1/16 BPS black holes in AdS_{5}.

Gutkowski, Reall, Chong, Cvetic, Lu, Pope, ...

There are large 1/16 BPS black holes in AdS_{5}.

And their entropies are not accounted for by the superconformal index (too small) nor by the number of BPS states in the free theory (too large).
[Kinney, Maldacena, Minwalla, Raju, '05]

We investigate this problem in weakly coupled $\mathrm{N}=4$ SYM, following [Grant, Grassi, Kim, Minwalla, '08]

1. We will identify all $1 / 16 \mathrm{BPS}$ states in the $\mathrm{N} \rightarrow \infty$ limit, and match precisely with BPS multi-(super) graviton states. (This was done previously within certain subsectors, but not to full generality.)
2. We conjecture that all $1 / 16$ BPS states at finite N are of the "multi-graviton" form. Some limited evidences via computerized enumeration of cohomology.
3. If our conjecture is correct, there are not enough states to account for the Bekenstein-Hawking entropy of BPS AdS_{5} black hole in supergravity - a sharp puzzle (more comments later).

Formulation of the counting problem (I)

1. We want to find all $1 / 16$ BPS local gauge invariant operators in $\mathrm{N}=4 \mathrm{SYM}$ (or equivalently, $1 / 16$ BPS states on S^{3}).
2. Pick one out of the 16 supercharges, call it Q. Its Hermitian conjugate in radial quantization is a special superconformal generator S.
3. The problem of counting $1 / 16$ BPS states, i.e. states annihilated by Q and S, is equivalent to counting Q-cohomology $\left(Q^{2}=0\right)$.

Formulation of the counting problem (II)

4. Suffices to work with letters that are $1 / 16$ BPS in the free theory, i.e. ones that classically saturates the BPS bound, $E=2 \mathrm{~J}_{\mathrm{L}}+\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3}$.
5. There are 4 bosonic letters of this type,

$$
\varphi^{\mathrm{n}}=\Phi^{4 \mathrm{n}}, \quad f=\mathrm{F}_{++}, \quad(\mathrm{n}=1,2,3)
$$

and 5 fermionic letters of this type,

$$
\psi_{n}=\psi_{n+}, \quad \lambda_{\alpha}=\bar{\Psi}_{\alpha}^{4}, \quad(\alpha= \pm)
$$

In addition, there are 2 covariant derivatives,

$$
D_{\alpha} \equiv D_{+\alpha} .
$$

Formulation of the counting problem (III)

6. And constraints (equation of motion)

$$
\left[D_{\alpha}, D_{\beta}\right]=\varepsilon_{\alpha \beta} f, \quad D_{\alpha} \lambda^{\alpha}=\left[\varphi^{n}, \psi_{n}\right] .
$$

7. Introduce commuting generating parameter z^{α}. Write

$$
\varphi^{n}(z)=\sum\left(z^{a} D_{\alpha}\right)^{k} \varphi^{n} / k!, \text { and similarly } \psi_{n}(z), f(z) .
$$

Also, $\lambda(z)=\sum\left(z^{\alpha} D_{\alpha}\right)^{k} z^{\beta} \lambda_{\beta} /(k+1)$!
8. Introduce anti-commuting generating parameter θ_{n}. Write

$$
\Psi(z, \theta)=\lambda(z)+\theta_{n} \varphi^{n}(z)+\varepsilon^{n m p} \theta_{n} \theta_{m} \psi_{p}(z)+\theta_{1} \theta_{2} \theta_{3} f(z) .
$$

Formulation of the counting problem (IV)

9. Write $\mathcal{Z} \equiv(z, \theta)$. Q-action now takes the concise form

$$
\{Q, \Psi(\Sigma)\}=\Psi(Z)^{2} .
$$

The only constraint on $\Psi(\mathbb{Z})$ is

$$
\Psi(0)=0
$$

10. All gauge invariant operators of zero twist are made out of products of derivatives of $\Psi(\mathbb{Z})$, then restricted to $\mathcal{Z}=0$.

Q-cohomology at $\mathrm{N}=\infty$

They are products of single trace operators of the following form:

$$
\left.\prod_{\alpha} \partial_{z \alpha}^{p_{\alpha}} \prod_{n} \partial_{\theta_{n}}^{q_{n}} \operatorname{Tr}\left[\prod_{\beta}\left(\partial_{z \beta} \Psi\right)^{k_{\beta}} \prod_{k}\left(\partial_{\theta_{k}} \Psi\right)^{m_{k}}\right]\right|_{z=\theta=0}
$$

These precisely agree with the counting of free $1 / 16$ BPS multi-gravitons in $\mathrm{AdS}_{5} \mathrm{XS}^{5}$.

Finite N

There are trace relations among the operators that describe multi-graviton states in the infinite N limit. We will still refer to such operators as "multigraviton" operators at finite N .

Are there new Q-cohomology classes due to trace relations?

Let's try...

For $\operatorname{SU}(\mathrm{N})$ theory, consider a fermionic letter $X(X$ could be $\partial_{\mathrm{z}^{+}} \Psi$, for instance). There is a trace relation of the form

$$
\operatorname{Tr}\left(X^{2 N+1}\right)=\text { multi-trace } .
$$

Now since $Q \operatorname{Tr}\left(\partial_{Z^{+}}^{2} \Psi\left(\partial_{\mathrm{z}^{+}} \Psi\right)^{2 \mathrm{~N}-1}\right)=\operatorname{Tr}\left(\left(\partial_{\mathrm{z}^{+}} \Psi\right)^{2 \mathrm{~N}+1}\right)$, we can try to construct a new Q-cohomology class using the operator $\operatorname{Tr}\left(\partial_{Z^{+}}^{2} \Psi\left(\partial_{\mathrm{z}^{+}} \Psi\right)^{2 N-1}\right)$. But, there is also a trace relation of the form

$$
\operatorname{Tr}\left(X^{2 N-1} Y\right)=\text { multi-trace. }
$$

In the end, no new Q-cohomology arises this way.

Computer tests

Next, we try the most straightforward search of new cohomology classes, by enumerating Q-closed and Qexact operators at low levels for $\operatorname{SU}(2), \mathrm{SU}(3), \mathrm{SU}(4)$ theories, and ask if all Q-cohomology classes are accounted for by the "multi-graviton" type operators.

This test is difficult to carry out to high levels, due to the computational complexity.

We did not find any new Q-cohomology class, in all cases tested.

Some $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ examples

Here we label the operator by the charge vector that counts the number of ∂_{z} 's and ∂_{θ} 's. The Q-cohomology in each charge sector is then graded by the number of Ψ 's, which ranges from 2 to the total number of ∂ 's.

charges	$\mathrm{N}=2$	$\mathrm{~N}=3$	$\mathrm{~N}=\infty$
$[4,4 ; 0,0,0]$	$(1,0,4,0,0,0,0)$	$(1,0,5,0,1,0,0)$	$(1,0,5,0,2,0,1)$
$[5,4 ; 0,0,0]$	$(1,0,5,0,0,0,0,0)$	$(1,0,6,0,3,0,0,0)$	$(1,0,6,0,4,0,1,0)$
$[5,0 ; 4,0,0]$	$(0,0,3,0,4,0,0,0)$	$(0,0,3,10,6,2,0,0)$	$(0,0,4,11,10,2,0,0)$
$[4,0 ; 5,0,0]$	$(0,0,0,0,6,0,0,0)$	$(0,0,0,5,10,8,1,0)$	$(0,0,0,6,19,14,2,0)$
$[0,0 ; 5,4,0]$	$(0,0,0,0,0,0,1,0)$	$(0,0,0,0,0,2,7,5)$	$(0,0,0,0,0,11,44,40)$
$[0,0 ; 2,2,2]$	$(0,0,4,0,1)$	$(0,0,7,11,5)$	$(0,0,8,19,16)$
$[0,0 ; 3,3,1]$	$(0,0,1,0,3,0)$	$(0,0,2,9,13,5)$	$(0,0,2,14,35,23)$
$[2,2 ; 1,1,0]$	$(3,0,13,0,0)$	$(3,3,22,7,1)$	$(3,3,23,13,5)$
$[1,1 ; 2,2,0]$	$(0,0,12,0,1)$	$(0,1,19,20,6)$	$(0,1,22,33,20)$
$[3,2 ; 1,1,0]$	$(3,0,26,0,0,0)$	$(3,3,35,17,7,0)$	$(3,3,36,23,16,3)$
$[1,1 ; 3,2,0]$	$(0,0,9,0,6,0)$	$(0,0,12,33,30,8)$	$(0,0,13,46,78,40)$
$[1,1 ; 1,1,1]$	$(4,0,10,0)$	$(4,6,20,5)$	$(4,6,24,11)$
$[2,1 ; 1,1,1]$	$(4,0,28,0,0)$	$(4,6,44,21,3)$	$(4,6,48,35,13)$
$[1,1 ; 2,1,1]$	$(1,0,27,0,1)$	$(1,4,41,34,8)$	$(1,4,47,55,28)$
$[1,1 ; 3,1,1]$	$(0,0,26,0,10,0)$	$(0,1,32,71,52,11)$	$(0,1,36,95,131,58)$

Some more $\operatorname{SU(2)}$ examples

Here we label the operator by the charge vector that counts the number of ∂_{z} 's and ∂_{θ} 's. The Q-cohomology in each charge sector is then graded by the number of Ψ 's, which ranges from 2 to the total number of ∂ 's.

charges	$\mathrm{N}=2$	$\mathrm{~N}=\infty$
$[6,5 ; 0,0,0]$	$(1,0,9,0,1,0,0,0,0,0)$	$(1,0,10,0,12,0,4,0,1,0)$
$[3,3 ; 3,0,0]$	$(0,0,23,0,19,0,0,0)$	$(0,1,26,53,90,65,28,8)$
$[3,0 ; 3,3,0]$	$(0,0,3,0,21,0,1,0)$	$(0,0,4,30,121,158,83,11)$
$[0,0 ; 3,3,3]$	$(0,0,0,0,4,0,3,0)$	$(0,0,0,3,49,175,258,131)$
$[1,1 ; 2,2,1]$	$(0,0,41,0,10,0)$	$(0,1,58,128,170,72)$
$[2,1 ; 2,1,1]$	$(1,0,58,0,5,0)$	$(1,4,81,118,114,35)$
$[2,2 ; 1,1,1]$	$(4,0,67,0,1,0)$	$(4,6,94,92,77,20)$
$[2,2 ; 2,1,1]$	$(1,0,114,0,28,0,0)$	$(1,4,140,242,382,237,60)$
$[2,1 ; 2,2,1]$	$(0,0,77,0,42,0,0)$	$(0,1,95,236,465,352,100)$
$[1,1 ; 2,2,2]$	$(0,0,46,0,43,0,1)$	$(0,0,54,191,508,515,199)$

In each case, no new cohomology class found.

We are led to conjecture that there are no new Qcohomology classes, i.e. all 1/16 BPS operators are of the multi-graviton type, namely products of

$$
\left.\prod_{\alpha} \partial_{z \alpha}^{p_{\alpha}} \prod_{n} \partial_{\theta_{n}}^{q_{n}} \operatorname{Tr}\left[\prod_{\beta} \mid\left(\partial_{z \beta} \Psi\right)^{k_{\beta}} \prod_{k}\left(\partial_{\theta_{k}} \Psi\right)^{m_{k}}\right]\right|_{z=\theta=0}
$$

In particular, this would imply that the number of $1 / 16$ BPS operators of a given dimension in the $\operatorname{SU}(\mathrm{N})$ theory cannot be more than the number of such operators in the $\mathrm{N} \rightarrow \infty$ limit (free gravitons).

The entropy of the latter grows like $S \sim \mathcal{E}^{5 / 6}$. One can also show that the entropy of "multi-graviton" operators at finite N is bounded by $S \leqslant N^{1 / 3} E^{2 / 3}$. Not enough states to account for large black hole entropy $\mathrm{S} \sim \mathrm{N}^{2}$ when $\mathrm{E} \sim \mathrm{N}^{2}$.

Some formality

In mathematical terms, our Q-cohomology classes are given by the relative Lie algebra cohomology (with coefficients in C)

$$
\mathrm{H}^{*}\left(\mathfrak{g}_{\mathrm{N}}, \mathrm{sl}_{N}\right)
$$

where g_{N} is the (infinite dimensional) Lie algebra of $C\left[Z_{+}, Z-\right] \otimes \Lambda\left[\theta_{1}, \theta_{2}, \theta_{3}\right] \otimes \operatorname{sl}_{N}$, with the subalgebra $\operatorname{sl}_{N} \subset \mathfrak{g}_{N}$. The grading of the cohomology is the degree in Ψ.

The inclusion $\mathfrak{i}: \mathfrak{g}_{N-1} \rightarrow \mathfrak{g}_{N}$ induces a map on the cohomology

$$
\mathfrak{i}^{*}: \mathrm{H}^{*}\left(\mathfrak{g}_{\mathrm{N}}, \operatorname{sl}_{\mathrm{N}}\right) \rightarrow \mathrm{H}^{*}\left(\mathfrak{g}_{\mathrm{N}-1}, \operatorname{sl}_{\mathrm{N}-1}\right)
$$

Our conjecture amounts to the statement that \mathfrak{i}^{*} is surjective, for all N .

Puzzle

We are not producing the expected Bekenstein-Hawking entropy of large $1 / 16$ BPS black hole from the counting of $1 / 16 \mathrm{BPS}$ operators in $\mathrm{N}=4 \mathrm{SYM}$ at weak coupling.

Possibility 1

The conjecture is false. Perhaps we did not test to high enough level in the $\operatorname{SU}(2)$ and $S U(3)$ examples.

Should be possibile to prove or disprove the conjecture by analyzing (a generalization of) the Hochschild-Serre spectral sequence associated with the embedding $\mathfrak{g}_{\mathrm{N}-1} \rightarrow \mathfrak{g}_{\mathrm{N}}$.

Possibility 2

The number of $1 / 16$ BPS states jump as the coupling increases. We see no evidence for this, however.

Possibility 3

1/16 BPS black hole solutions in supergravity are destroyed by stringy corrections, and such black holes do not exist in the full string theory on $\mathrm{AdS}_{5} \mathrm{xS}^{5}$.

In any case, the existence of the $1 / 16$ BPS black hole solutions in supergravity implies at least large number of near-1/16 BPS states at strong coupling, at dimension $\sim N^{2}$. [Berkooz, Reichmann '08]

This is a fascinating regime of $\mathrm{N}=4 \mathrm{SYM}$ to explore.

