Abstract

Monitored quantum circuits, composed of local unitary operators and projective measurements, have recently emerged as a rich setting for studying non-equilibrium quantum dynamics. In such systems, sufficient densities of measurements can protect a highly-monitored steady state phase with area law entanglement. Furthermore, it has been shown that such area law phases can host a measurement-protected Ising ferromagnetic order. However, it is not yet known whether such measurement-protected order is a generic phenomenon or whether it relies on the discrete Ising symmetry. To begin answering this question, we introduce a circuit model with continuous symmetry where ferromagnetic order arises in the steady state. Notably, our model requires feedback based on measurement results in order to generate this ferromagnetic order

Details

Talk Number 22060051
Speaker Profile Jacob Hauser
Subject Physics
Source Repository PIRSA