Format results
-
Talk
-
-
Talk
-
Numerical Methods Lecture - 230126
Erik Schnetter Perimeter Institute for Theoretical Physics
23010007 -
Numerical Methods Lecture - 230124
Erik Schnetter Perimeter Institute for Theoretical Physics
23010006 -
Numerical Methods Lecture - 230120
Erik Schnetter Perimeter Institute for Theoretical Physics
23010011 -
Numerical Methods Lecture - 230119
Erik Schnetter Perimeter Institute for Theoretical Physics
23010005 -
Numerical Methods Lecture - 230117
Erik Schnetter Perimeter Institute for Theoretical Physics
23010004 -
Numerical Methods Lecture - 230112
Erik Schnetter Perimeter Institute for Theoretical Physics
23010003 -
Numerical Methods Lecture - 230111
Erik Schnetter Perimeter Institute for Theoretical Physics
23010009 -
Numerical Methods Lecture - 230110
Erik Schnetter Perimeter Institute for Theoretical Physics
23010002
-
-
Talk
-
-
Talk
-
Mathematical Physics Lecture - 230127
Kevin Costello Perimeter Institute for Theoretical Physics
23010021 -
Mathematical Physics Lecture - 230126
Kevin Costello Perimeter Institute for Theoretical Physics
23010017 -
Mathematical Physics Lecture - 230124
Kevin Costello Perimeter Institute for Theoretical Physics
23010016 -
Mathematical Physics Lecture - 230119
Kevin Costello Perimeter Institute for Theoretical Physics
23010015 -
Mathematical Physics Lecture - 230118
Kevin Costello Perimeter Institute for Theoretical Physics
23010022 -
Mathematical Physics Lecture - 230117
Kevin Costello Perimeter Institute for Theoretical Physics
23010014 -
Mathematical Physics Lecture - 230113
Giuseppe Sellaroli Perimeter Institute for Theoretical Physics
23010019 -
Mathematical Physics Lecture - 230112
Giuseppe Sellaroli Perimeter Institute for Theoretical Physics
23010013
-
-
Talk
-
Quantum Foundations Lecture - 230130
Lucien Hardy Perimeter Institute for Theoretical Physics
23010055 -
Quantum Foundations Lecture - 230127
Lucien Hardy Perimeter Institute for Theoretical Physics
23010054 -
Quantum Foundations Lecture - 230125
Lucien Hardy Perimeter Institute for Theoretical Physics
23010053 -
Quantum Foundations Lecture - 230123
Lucien Hardy Perimeter Institute for Theoretical Physics
23010052 -
Quantum Foundations Lecture - 230120
Lucien Hardy Perimeter Institute for Theoretical Physics
23010051 -
Quantum Foundations Lecture - 230119
Lucien Hardy Perimeter Institute for Theoretical Physics
23010048 -
Quantum Foundations Lecture - 230118
Lucien Hardy Perimeter Institute for Theoretical Physics
23010050 -
Quantum Foundations Lecture - 230116
Lucien Hardy Perimeter Institute for Theoretical Physics
23010049
-
-
Talk
-
Fitting models to data using Markov Chain Monte Carlo
Dustin Lang Perimeter Institute for Theoretical Physics
23010089 -
Topological quantum matter and quantum computing
Tsung-Cheng Lu (Peter) Perimeter Institute for Theoretical Physics
23010087 -
Topological quantum matter and quantum computing
Tsung-Cheng Lu (Peter) Perimeter Institute for Theoretical Physics
23010086 -
Topological quantum matter and quantum computing
Tsung-Cheng Lu (Peter) Perimeter Institute for Theoretical Physics
23010084 -
-
Knot categorification from mirror symmetry
-
Mina Aganagic University of California System
- Mina Aganagic
23010082 -
-
-
-
-
Talk
-
-
Talk
-
-
Talk
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
-
Talk
-
QuEra - quantum computing with neutral atoms:
Anna Knorr Perimeter Institute
-
Gibbs Sampling of Periodic Potentials on a Quantum Computer
Arsalan Motamedi University of Waterloo
-
-
Representing quantum states with spiking neural networks
- Stefanie Czischek
-
Quantum hypernetworks
Juan Carrasquilla Vector Institute for Artificial Intelligence
-
A Study of Neural Network Field Theories
Anindita Maiti Northeastern University
-
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks
Friederike Metz Okinawa Institute of Science and Technology Graduate University
-
Matchgate Shadows for Fermionic Quantum Simulation
-
Kianna Wan Stanford University
- Kianna Wan
-
-
-
Talk
-
Unlocking the Universe with quantum materials
Jess McIver University of British Columbia
-
Common features in spin-orbit excitations of Kitaev materials
Young-June Kim University of Toronto
-
Intrinsically gapless symmetry-protected topology
-
Andrew Potter University of British Columbia
- Andrew Potter
-
-
Emergent anomalies and generalized Luttinger theorems in metals and semimetals
Anton Burkov University of Waterloo
-
Measurement as a shortcut to long-range entangled quantum matter
Tsung-Cheng Lu (Peter) Perimeter Institute for Theoretical Physics
-
A minimalist's approach to the physics of emergence
Liujun Zou Perimeter Institute for Theoretical Physics
-
Synthesis of many-body quantum states using group-IV (Ge/Si) quantum devices
Joe Salfi University of British Columbia
-
-
-
Talk
-
-
-
-
-
Quantum Field Theory I - Lecture 221031
Gang Xu Perimeter Institute for Theoretical Physics
22100057 -
Quantum Field Theory I - Lecture 221028
Gang Xu Perimeter Institute for Theoretical Physics
22100056 -
Quantum Field Theory I - Lecture 221026
Gang Xu Perimeter Institute for Theoretical Physics
22100055 -
Quantum Field Theory I - Lecture 221024
Gang Xu Perimeter Institute for Theoretical Physics
22100054
-
-
Standard Model (2022/2023)
Topics will include: Non-abelian gauge theory (aka Yang-Mills theory), the Standard Model (SM) as a particular non-abelian gauge theory (its gauge symmetry, particle content, and Lagrangian, Yukawa couplings, CKM matrix, 3 generations), spontaneous symmetry breaking: global vs local symmetries (Goldstone's Theorem vs Higgs Mechanism; mass generation for bosons and fermions), neutrino sector (including right-handed neutrinos?), effective field theory, Feynman rules (Standard Model propagators and vertices), gauge and global anomalies, strong CP problem, renormalization group (beta functions, asymptotic freedom, quark confinement, mesons, baryons, Higgs instability, hierarchy problem), unexplained puzzles in the SM, and surprising/intriguing aspects of SM structure that hint at a deeper picture. -
Numerical Methods (2022/2023)
This course teaches basic numerical methods that are widely used across many fields of physics. The course is based on the Julia programming language. Topics include an introduction to Julia, linear algebra, Monte Carlo methods, differential equations, and are based on applications by researchers at Perimeter. The course will also teach principles of software engineering ensuring reproducible results. -
Gravitational Physics (2022/2023)
The main objective of this course is to discuss some advanced topics in gravitational physics and its applications to high energy physics. Necessary mathematical tools will be introduced on the way. These mathematical tools will include a review of differential geometry (tensors, forms, Lie derivative), vielbeins and Cartan’s formalism, hypersurfaces, Gauss-Codazzi formalism, and variational principles (Einstein-Hilbert action & Gibbons-Hawking term). Several topics in black hole physics including the Kerr solution, black hole astrophysics, higher-dimensional black holes, black hole thermodynamics, Euclidean action, and Hawking radiation will be covered. Additional advanced topics will include domain walls, brane world scenarios, Kaluza-Klein theory and KK black holes, Gregory-Laflamme instability, and gravitational instantons
-
Mathematical Physics (2022/2023)
This course will cover the mathematical structure underlying classical gauge theory. Previous knowledge of differential geometry is not required. Topics covered in the course include: introduction to manifolds, symplectic manifolds, introduction to Lie groups and Lie algebras; deformation quantisation and geometric quantisation; the matematical structure of field theories; scalar field theory; geometric picture of Yang-Mills theory; symplectic reduction. If time permits, we may also look at the description of gauge theory in terms of principal bundles and the topological aspects of gauge theory. -
Quantum Foundations (2022/2023)
This course will cover the basics of Quantum Foundations under three main headings. Part I – Novel effects in Quantum Theory. A number of interesting quantum effects will be considered. (a) Interferometers: Mach-Zehnder interferometer, Elitzur-Vaidman bomb tester, (b) The quantum-Zeno effect. (c) The no cloning theorem. (d) Quantum optics (single mode). Hong-Ou-Mandel dip. Part II Conceptual and interpretational issues. (a) Axioms for quantum theory for pure states. (b) Von-Neumann measurement model. * (c) The measurement (or reality) problem. (d) EPR Einstein’s 1927 remarks, the Einstein-Podolsky-Rosen argument. (e) Bell’s theorem, nonlocality without inequalities. The Tirolson bound. (f) The Kochen-Specker theorem and related work by Spekkens (g) On the reality of the wavefunction: Epistemic versus ontic interpretations of the wavefunction and the Pusey-Barrett-Rudolph theorem proving the reality of the wave function. (h) Gleason’s theorem. (i) Interpretations. The landscape of interpretations of quantum theory (the Harrigen Spekkens classification). The de Broglie-Bohm interpretation, the many worlds interpretation, wave-function collapse models, the Copenhagen interpretation, and QBism. Part III Structural issues. (a) Reformulating quantum theory: I will look at some reformulations of quantum theory and consider the light they throw on the structure of quantum theory. These may include time symmetric quantum theory and weak measurements (Aharonov et al), quantum Bayesian networks, and the operator tensor formalism. (b) Generalised probability theories: These are more general frameworks for probabilistic theories which admit classical and quantum as special cases. (c) Reasonable principles for quantum theory: I will review some of the recent work on reconstructing quantum theory from simple principles. (d) Indefinite causal structure and indefinite causal order. Finally I will conclude by looking at (i) the close link between quantum foundations and quantum information and (ii) possible future directions in quantum gravity motivated by ideas from quantum foundations.
-
Symmetries Graduate School 2023
The goal of this Winter School on Symmetries is to introduce graduate students to the effectiveness of symmetry principles across subjects and energy scales.
From Noether’s celebrated theorem to the development of the standard model of particle physics, from Landau’s to Wilson’s classification of phases of matter and phase transitions, symmetries have been key to 20th century physics. But in the last decades novel and more subtle incarnations of the symmetry principle have shown us the way to unlocking new and unexpected phases of quantum matter, infrared and holographic properties of the quantum gravitational interaction, as well as to advancements in pure mathematics to mention a few.
The Graduate Winter School on Symmetries will introduce students and young researchers to a variety of applications of the symmetry principle. These will be chosen across contemporary research topics in both theoretical physics and mathematics. Our goal is to create a synergistic environment where ideas and techniques can ultimately spread across disciplines. This will be achieved through a combination of mini-courses, colloquia, and discussion sessions led in collaboration with the students themselves.
https://pirsa.org/C23008
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Quantum Field Theory II (2022/2023)
The course has three parts. In the first part of the course, the path integral formulation of non-relativistic quantum mechanics and the functional integral formulation of quantum field theory are developed. The second part of the course covers renormalization and the renormalization group. Finally, non-abelian gauge theories are quantized using functional integral techniques.
-
Statistical Physics (2022/2023)
The course begins by discussing several topics in equilibrium statistical physics including phase transitions and the renormalization group. The second part of the course covers non-equilibrium statistical physics including kinetics of aggregation, spin dynamics, population dynamics, and complex networks.
-
Special Topics in Physics - QFT2: Quantum Electrodynamics (Cliff Burgess)
This course uses quantum electrodynamics (QED) as a vehicle for covering several more advanced topics within quantum field theory, and so is aimed at graduate students that already have had an introductory course on quantum field theory. Among the topics hoped to be covered are: gauge invariance for massless spin-1 particles from special relativity and quantum mechanics; Ward identities; photon scattering and loops; UV and IR divergences and why they are handled differently; effective theories and the renormalization group; anomalies.
-
New Frontiers in Machine Learning and Quantum
This workshop will bring together a group of young trendsetters working at the frontier of machine learning and quantum information. The workshop will feature two days of talks, and ample time for participants to interact and form new collaborations in the inspiring environment of the Perimeter Institute. Topics will include machine learning, quantum field theory, quantum information, and unifying theoretical concepts.
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Quantum Matter Workshop
The goal of this conference is for quantum matter researchers at Perimeter, University of British Columbia, and University of Toronto to share their recent work with each other, to facilitate discussion and collaboration.
https://pirsa.org/C22033
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Quantum Field Theory I (2022/2023)
The course starts by looking for a quantum theory that is compatible with special relativity, without assuming fields are fundamental. Nevertheless fields turn out to be a very good, maybe inevitable mathematical tool for formulating and studying such a relativistic quantum theory. The second part of the course introduces the Dirac theory and canonically quantizes it. It also quantizes the Maxwell field theory. The Feynman diagram technique for perturbation theory is developed and applied to the scattering of relativistic fermions and photons. Renormalization of quantum electrodynamics is done to one-loop order.
Prerequisite: PSI Quantum Theory course or equivalently Graduate level Quantum Mechanics and QFT of scalar theory